Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras

Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras

The purpose of this paper is to study the $\mathcal{O}$-operators on Malcev algebras and discuss the solutions of Malcev Yang-Baxter equation by $\mathcal{O}$-operators. Furthermore we introduce the notion of weighted $\mathcal{O}$-operators on Malcev algebras, which can be characterized by graphs of the semi-direct product Malcev algebra. Then we introduce a new algebraic structure called post-Malcev algebras. Therefore, post-Malcev algebras can be viewed as the underlying algebraic structures of weighted $\mathcal{O}$-operators on Malcev algebras. A post-Malcev algebra also gives rise to a new Malcev algebra. Post-Malcev algebras are analogues for Malcev algebras of post-Lie algebras and fit into a bigger framework with a close relationship with post-alternative algebras.

___

  • [1] F. V. Atkinson, Some aspects of Baxters functional equation, J. Math. Anal. Appl. 7, 1-30, 1963.
  • [2] C.M. Bai, A unified algebraic approach to classical Yang-Baxter equation, J. Phy. A: Math. Theor., 40, 11073-11082, 2007.
  • [3] C. Bai, O. Bellier, L. Guo and X. Ni, Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Notes 3, 485-524, 2013.
  • [4] C. Bai and D.P. Hou, J-dendriform algebras, Front. Math. China. 7 (1), 29-49, 2012.
  • [5] C. Bai, L.G. Liu and X. Ni, Some results on L-dendriform algebras, J. Geom. Phys. 60 (6-8), 940-950, 2010.
  • [6] C. Bai and X. Ni, Pre-alternative algebras and pre-alternative bialgebras, Pacific J. Math. 248, 355-390, 2010.
  • [7] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10, 731-742 , 1960.
  • [8] D. Burde and K. Dekimpe, Post-Lie algebra structures on pairs of Lie algebras, J. Algebra, 464, 226-245, 2016.
  • [9] P. Cartier, On the structure of free Baxter algebras, Adv. Math. 9, 253-265, 1972.
  • [10] K. Ebrahimi-Fard, A. Lundervold and H. Munthe-Kaas, On the Lie enveloping algebra of a post-Lie algebra, J. Lie Theory 25 (4), 1139-1165, 2015.
  • [11] M.E. Goncharov, Structures of Malcev bialgebras on a simple non-Lie Malcev Algebra, Commun. Algebra 40 (8), 3071-3094, 2012.
  • [12] V. Yu. Gubarev and P.S. Kolesnikov, Operads of decorated trees and their duals, Comment. Math. Univ. Carolin. 55 (4), 421-445 , 2014.
  • [13] L. Guo, What is a RotaBaxter algebra, Notices. Amer. Math. Soc. 56, 14361437, 2009.
  • [14] L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. Math. 150, 117149, 2000.
  • [15] L. Guo and B. Zhang, Renormalization of multiple zeta values, J. Algebra 319, 37703809, 2008.
  • [16] F. Harrathi, S. Mabrouk, O. Ncib and S. Silvestrov, Kupershmidt operators on Hom- Malcev algebras and their deformation, Int. J. Geom. Methods Mod. Phys. 2022. https://doi.org/10.1142/S0219887823500469
  • [17] D. Hou, X. Ni and C. Bai, Pre-Jordan algebras, Math. Scand. 112 (1), 19-48, 2013.
  • [18] F.S. Kerdman, Analytic Moufang loops in the large, Algebra Log. 18, 325-347, 1980.
  • [19] B.A. Kupershmidt, What a Classical r-Matrix Really Is, J. Nonlin. Math. Phys. 6 (4), 448-488, 1999.
  • [20] E.N. Kuzmin, Malcev algebras and their representations, Algebra Log. 7 233-244, 1968.
  • [21] E.N. Kuzmin, The connection between Malcev algebras and analytic Moufang loops, Algebra Log. 10, 1-14, 1971.
  • [22] E.N. Kuzmin and I.P. Shestakov, Non-associative structures, Algebra VI, Encyclopaedia Math. Sci. 57, Springer, Berlin, 197-280, 1995.
  • [23] L. Liu, X. Ni and C. Bai, L-quadri-algebras, Scientia Sinica Mathematica, 41 (2), 105-124, 2011.
  • [24] J.-L. Loday, Dialgebras, in: J.-L. Loday A. Frabetti F. Chapoton F. Goichot (eds.), Dialgebras and Related Operads, Lecture Notes in Mathematics, 1763, 7-66, 2001.
  • [25] J.-L. Loday and M. Ronco, Trialgebras and families of polytopes. Contemp. Math. 346, 369-398, 2004.
  • [26] S. Madariaga,Splitting of operations for alternative and Malcev structures, Commun. Algebra, 45 (1), 183-197, 2014.
  • [27] A.I. Malcev, Analytic loops, Mat. Sb. 36, 569-576, 1955.
  • [28] P.T. Nagy, Moufang loops and Malcev algebras, Sem. Sophus Lie 3, 65-68, 1993.
  • [29] P.C. Rosenbloom, Post Algebras. I. Postulates and General Theory, Amer. J. Math. 64 (1), 167-188, 1942.
  • [30] G.-C. Rota, Baxter algebras and combinatorial identities I, Bull. Amer. Math. Soc. 75, 325-329, 1969.
  • [31] G. Rousseau, Post algebras and pseudo-Post algebras, Fundamenta Mathematicae, 67 133-145, 1970.
  • [32] R. D. Schafer, Representations of alternative algebras, Trans. Amer. Math. Soc. 72, 1-17, 1952.
  • [33] B. Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra, 208 (2), 699-725, 2007.
  • [34] P. Yu, Q. Liu, C. Bai and L. Guo, Post-Lie algebra structures on the Lie algebra $\mathrm{sl}(2,\mathbb{C})$ , Electron. J. Linear Algebra 23, 180-197, 2012.
Hacettepe Journal of Mathematics and Statistics-Cover
  • Yayın Aralığı: 6
  • Başlangıç: 2002
  • Yayıncı: Hacettepe Üniversitesi Fen Fakultesi
Sayıdaki Diğer Makaleler

Output regulation for time–delayed Takagi–Sugeno fuzzy model with networked control system

Muhammad Shamrooz ASLAM, Zhenhua MA

Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach

Habbiburr REHMAN, N. CHANDRA, Ali ABUZAİD

$A$-numerical radius : New inequalities and characterization of equalities

Pintu BHUNİA, Kallol PAUL

Inverse problem for differential systems having a singularity and turning point of even or odd order

Seyfollah MOSAZADEH

A new adjusted Bayesian method in Cox regression model with covariate subject to measurement error

Hatice IŞIK, Duru KARASOY, Uğur KARABEY

A study on the tangent bundle with the vertical generalized Berger type deformed Sasaki metric

Saadia CHAOUİ, Abderrahım ZAGANE, Aydın GEZER, Nour Elhouda DJAA

Lower and upper stochastic bounds for the joint stationary distribution of a non-preemptive priority retrial queueing system

Houria HABLAL, Nassim TOUCHE, Lalamaghnia ALEM, Amina Angelika BOUCHENTOUF, Mohamed BOUALEM

Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras

Fattoum HARRATHİ, Sami MABROUK, Othmen NCİB, Sergei SILVESTROV

Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring

Fatma ÇİFTCİ, Buğra SARAÇOĞLU, Neriman AKDAM, Yunus AKDOĞAN

Semi-slant submanifolds in a locally conformal Kaehler space form

Vittoria BONANZINGA, Koji MATSUMOTO