Lower and upper stochastic bounds for the joint stationary distribution of a non-preemptive priority retrial queueing system

Lower and upper stochastic bounds for the joint stationary distribution of a non-preemptive priority retrial queueing system

Consider a single-server retrial queueing system with non-preemptive priority service, where customers arrive in a Poisson process with a rate of $\lambda_1$ for high-priority customers (class 1) and $\lambda_2$ for low-priority customers (class 2). If a high-priority customer is blocked, they are queued, while a low-priority customer must leave the service area and return after some random period of time to try again. In contrast with existing literature, we assume different service time distributions for the two customer classes. This investigation proposes a stochastic comparison method based on the general theory of stochastic orders to obtain lower and upper bounds for the joint stationary distribution of the number of customers at departure epochs in the considered model. Specifically, we discuss the stochastic monotonicity of the embedded Markov queue-length process in terms of both the usual stochastic and convex orders. We also perform a numerical sensitivity analysis to study the effect of the arrival rate of high-priority customers on system performance measures.

___

  • [1] L.M. Alem, M. Boualem and D. Aïssani, Stochastic comparison bounds for M1,M2/G1,G2/1 retrial queue with two way communication, Hacet. J. Math. Stat. 48 (4), 1185–1200, 2019.
  • [2] L.M. Alem, M. Boualem and D. Aïssani, Bounds of the stationary distribution in M/G/1 retrial queue with two-way communication and n types of outgoing calls, Yugosl. J. Oper. Res. 29 (3), 375–391, 2019.
  • [3] S.I. Ammar and P. Rajadurai, Performance analysis of preemptive priority retrial queueing system with disaster under working breakdown services, Symmetry 11 (3), 1–15, 2019.
  • [4] J.R. Artalejo and A. Gómez-Corral, Retrial Queueing System: A Computational Approach, Springer, Berlin, 2008.
  • [5] I. Atencia, M.Á. Galán-García, G. Aguilera-Venegas and J.L. Galán-García, A non markovian retrial queueing system, J. Comput. Appl. Math. 431, 1-13, 2023.
  • [6] A. Bhagat, Unreliable priority retrial queues with double orbits and discouraged customers, AIP Conf. Proc. 2214 (1), 020014, 2020.
  • [7] M. Boualem, Insensitive bounds for the stationary distribution of a single server retrial queue with server subject to active breakdowns, Adv. Oper. Res., Doi: 10.1155/2014/985453, 2014.
  • [8] M. Boualem, Stochastic analysis of a single server unreliable queue with balking and general retrial time, Discrete Contin. Models Appl. Comput. 28 (4), 319–326, 2020.
  • [9] M. Boualem, A. Bareche and M. Cherfaoui, Approximate controllability of stochastic bounds of stationary distribution of an M/G/1 queue with repeated attempts and twophase service, Int. J. Manag. Sci. Eng. Manag. 14 (2), 79–85, 2019.
  • [10] M. Boualem, M. Cherfaoui and D. Aïssani, Monotonicity properties for a single server queue with classical retrial policy and service interruptions, Proc. Jangjeon Math. Soc. 19 (2), 225–236, 2016.
  • [11] M. Boualem, M. Cherfaoui, N. Djellab and D. Aïssani, A stochastic version analysis of an M/G/1 retrial queue with Bernoulli schedule, Bull. Iranian Math. Soc. 43 (5), 1377–1397, 2017.
  • [12] M. Boualem, M. Cherfaoui, N. Djellab and D. Aïssani, Inégalités stochastiques pour le modèle d’attente M/G/1/1 avec rappels, Afr. Mat. 28 (5-6), 851–868, 2017.
  • [13] M. Boualem, N. Djellab and D. Aïssani, Stochastic inequalities for M/G/1 retrial queues with vacations and constant retrial policy, Math. Comput. Model. 50 (1-2), 207–212, 2009.
  • [14] M. Boualem, N. Djellab and D. Aïssani, Stochastic bounds for a single server queue with general retrial times, Bull. Iranian Math. Soc. 40 (1), 183–198, 2014.
  • [15] M. Boualem, N. Djellab and D. Aïssani, Stochastic approximations and monotonicity of a single server feedback retrial queue, Math. Probl. Eng., Doi: 10.1155/2012/536982, 2012.
  • [16] M. Boualem and N. Touche, Stochastic monotonicity approach for a non-Markovian priority retrial queue, Asian-Eur. J. Math. 14 (09), 1-8, 2021.
  • [17] A. Bušić and J.M. Fourneau, Monotonicity and performance evaluation: Applications to high speed and mobile networks, Clust. Comput. 15, 401–414, 2012.
  • [18] B.D. Choi and Y. Chang, Single server retrial queues with priority calls, Math. Comput. Model. 30 (3–4), 7–32, 1999.
  • [19] C. D’Apice, A. Dudin, S. Dudin and R. Manzo, Priority queueing system with many types of requests and restricted processor sharing, J. Ambient Intell. Humaniz. Comput. 14, 12651–12662, 2023.
  • [20] A. Devos, J. Walraevens, T. Phung-Duc and H. Bruneel, Analysis of the queue lengths in a priority retrial queue with constant retrial policy, J. Ind. Manag. Optim. 16 (6), 2813–2842, 2020.
  • [21] I. Dimitriou, A single server retrial queue with event-dependent arrival rates, Ann. Oper. Res., Doi: 10.1007/s10479-023-05263-z, 2023.
  • [22] A.N. Dudin, M.H. Lee, O. Dudina and S.K. Lee, Analysis of priority retrial queue with many types of customers and servers reservation as a model of cognitive radio system, IEEE Trans. Commun. 65 (1), 186–199, 2017.
  • [23] G.I. Falin, A survey of retrial queues, Queueing Syst. 7, 127–168, 1990.
  • [24] G.I. Falin, J.R. Artalejo and M. Martin, On the single server retrial queue with priority customers, Queueing Syst. 14, 439–455, 1993.
  • [25] G.I. Falin, and J.G.C. Templeton, Retrial Queues, Chapman and Hall, London, 1997.
  • [26] D. Fiems, Retrial queues with constant retrial times, Queueing Syst. 103, 347–365 2023.
  • [27] W. Fong-Fan, An efficient optimization procedure for location-inventory problems with (S−1, S) policy and retrial demands, Math. Comput. Simulation 206, 664–688, 2023.
  • [28] S. Gao, A preemptive priority retrial queue with two classes of customers and general retrial times, Oper. Res. Int. J. 15 (2), 233–251, 2015.
  • [29] M. Jain and S.S. Sanga, Unreliable single server double orbit retrial queue with balking, Proc. Nat. Acad. Sci. India Sect. A 91, 257–268, 2021.
  • [30] K. Kim, M/G/1 preemptive priority queues with finite and infinite buffers, J. Soc. Korea Ind. Syst. 43 (4), 1–14, 2020.
  • [31] K. Kim, (N, n)-preemptive-priority M/G/1 queues with finite and infinite buffers, J. Appl. Math., Doi: 10.1155/2022/5834258, 2022.
  • [32] K. Kim, Finite-buffer M/G/1 queues with time and space priorities, Math. Probl. Eng., Doi: 10.1155/2022/4539940, 2022.
  • [33] B.K. Kumar, R. Sankar, R.N. Krishnan and R. Rukmani, Performance analysis of multi-processor two-stage tandem call center retrial queues with non-reliable processors, Methodol. Comput. Appl. Probab. 24, 95–142, 2022.
  • [34] H.M. Liang and V.G. Kulkarni, Monotonicity properties of single server retrial queues, Stoch. Models 9 (3), 373–400, 1993.
  • [35] W.A. Massey, Stochastic orderings for Markov processes on partially ordered spaces, Math. Oper. Res. 12 (2), 350–367, 1987.
  • [36] A.V. Mistryukov and V.G. Ushakov, Ergodicity of two class priority queues with preemptive priority, J. Math. Sci. 267, 255–259, 2022.
  • [37] L. Mokdad and H. Castel-Taleb, Stochastic comparisons: A methodology for the performance evaluation of fixed and mobile networks, Comput. Commun. 31 (17), 3894– 3904, 2008.
  • [38] A. Müller and D. Stoyan, Comparison Methods for Stochastic Models and Risk, John Wiley and Sons, 2002.
  • [39] R. Nekrasova, E. Morozov, D. Efrosinin and S. Natalia, Stability analysis of a twoclass system with constant retrial rate and unreliable server, Ann. Oper. Res., Doi: 10.1007/s10479-023-05216-6, 2023.
  • [40] T. Phung-Duc, K. Akutsu, K. Kawanishi, O. Salameh and S. Wittevrongel, Queueing models for cognitive wireless networks with sensing time of secondary users, Ann. Oper. Res. 310 (2), 641–660, 2022.
  • [41] R. Raj and V. Jain, Optimization of traffic control in MMAP[2]/PH[2]/S priority queueing model with PH retrial times and the preemptive repeat policy, J. Ind. Manag. Optim. 19 (4), 2333–2353, 2023.
  • [42] S.S. Sanga and M. Jain, Cost optimization and ANFIS computing for admission control of M/M/1/K queue with general retrial times and discouragement, Appl. Math. Comput. 363, 1-22, 2019.
  • [43] A.K. Subramanian, U. Ghosh, S. Ramaswamy, W.S. Alnumay and P.K. Sharma, PrEEMAC: Priority based energy efficient MAC protocol for Wireless Body Sensor Networks, Sustain. Comput.: Inform. Syst. 30, 1-9, 2021.
  • [44] K. Sun, Y. Liu and K. Li, Energy harvesting cognitive radio networks with strategic users: A two-class queueing model with retrials, Comput. Commun. 199, 98–112, 2023.
  • [45] M. Sundararaman, D. Narasimhan and I.A. Sherif, Reliability and optimization measures of retrial queue with different classes of customers under a working vacation schedule, Discrete Dyn. Nat. Soc., Doi: 10.1155/2022/6806104, 2022.
  • [46] L. Suoping, X. Qianyu, G. Jaafar and Y. Nana, Modeling and performance analysis of channel assembling based on Ps-rc strategy with priority queues in CRNs, Wirel. Commun. Mob. Comput., Doi: 10.1155/2022/6384261, 2022.
  • [47] R. Szekli, Stochastic Ordering and Dependence in Applied Probability, Springer, New York, 1995.
  • [48] I.M. Verloop, U. Ayesta and S. Borst, Monotonicity properties for multi-class queueing systems, Discrete Event Dyn. Syst. 20, 473–509, 2010.
  • [49] J. Xu, L. Liu and K. Wu, Analysis of a retrial queueing system with priority service and modified multiple vacations, Comm. Statist. Theory Methods 52 (17), 6207–6231, 2023.
  • [50] T. Yang and J.G.C. Templeton, A survey on retrial queues, Queueing Syst. 2, 201– 233, 1997.
  • [51] S. Yuvarani and M.C. Saravanarajan, Analysis of a preemptive priority retrial queue with negative customers, starting failure and at most J vacations, Int. J. of Knowledge Management in Tourism and Hospitality 1 (1), 76–109, 2017.
  • [52] Y. Zhang and J. Wang, Effectiveness, fairness and social welfare maximization: service rules for the interrupted secondary users in cognitive radio networks, Ann. Oper. Res. 323, 247–286, 2023.
  • [53] D. Zirem, M. Boualem, K. Adel-Aissanou and D. Aïssani, Analysis of a single server batch arrival unreliable queue with balking and general retrial time, Qual. Technol. Quant. Manag. 16 (6), 672–695, 2019.
Hacettepe Journal of Mathematics and Statistics-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2002
  • Yayıncı: Hacettepe Üniversitesi Fen Fakultesi
Sayıdaki Diğer Makaleler

Lower and upper stochastic bounds for the joint stationary distribution of a non-preemptive priority retrial queueing system

Houria HABLAL, Nassim TOUCHE, Lalamaghnia ALEM, Amina Angelika BOUCHENTOUF, Mohamed BOUALEM

Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras

Fattoum HARRATHİ, Sami MABROUK, Othmen NCİB, Sergei SILVESTROV

Weakly $ (k,n) $-absorbing (primary) hyperideals of a Krasner $ (m,n) $-hyperring

Bijan DAVVAZ, Gülşen ULUCAK, Ünsal TEKİR

A study on the tangent bundle with the vertical generalized Berger type deformed Sasaki metric

Saadia CHAOUİ, Abderrahım ZAGANE, Aydın GEZER, Nour Elhouda DJAA

Adaptive Nadaraya-Watson kernel regression estimators utilizing some non-traditional and robust measures: a numerical application of British food data

Usman SHAHZAD, Ishfaq AHMAD, Ibrahim M ALMANJAHİE, Nadia H. AL – NOOR, Muhammad HANİF

Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach

Habbiburr REHMAN, N. CHANDRA, Ali ABUZAİD

Semi-slant submanifolds in a locally conformal Kaehler space form

Vittoria BONANZINGA, Koji MATSUMOTO

On a minimal set of generators for the algebra $H^*(BE_6; \mathbb F_2)$ as a module over the Steenrod algebra and applications

Nguyen Khac TİN

On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting

Salim BOUZEBDA

Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring

Fatma ÇİFTCİ, Buğra SARAÇOĞLU, Neriman AKDAM, Yunus AKDOĞAN