$A$-numerical radius : New inequalities and characterization of equalities

$A$-numerical radius : New inequalities and characterization of equalities

We develop new lower bounds for the $A$-numerical radius of semi-Hilbertian space operators, and applying these bounds we obtain upper bounds for the $A$-numerical radius of the commutators of operators. The bounds obtained here improve on the existing ones. Further, we provide characterizations for the equality of the existing $A$-numerical radius inequalities of semi-Hilbertian space operators.

___

  • [1] M.L. Arias, G. Corach and M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428, 1460-1475, 2008.
  • [2] H. Baklouti, K. Feki and O.A.M. Sid Ahmed, Joint numerical ramges of operators in semi-Hilbertian spaces, Linear Algebra Appl. 555, 266-284, 2018.
  • [3] P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on Numerical Radius Inequalities, Infosys Science Foundation Series, Infosys Science Foundation Series in Mathematical Sciences, Springer Cham, 2022.
  • [4] P. Bhunia, K. Feki and K. Paul, A-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications, Bull. Iran. Math. Soc. 47, 435-457, 2021.
  • [5] P. Bhunia, K. Feki and K. Paul, Generalized A-numerical radius of operators and related inequalities, Bull. Iran. Math. Soc. 48 (6), 3883-3907, 2022.
  • [6] P. Bhunia, R.K. Nayak and K. Paul, Refinements of A-numerical radius inequalities and their applications, Adv. Oper. Theory 5 (4), 1498-1511, 2020.
  • [7] P. Bhunia, R.K. Nayak and K. Paul, Improvement of A-numerical radius inequalities of semi-Hilbertian space operators, Results Math. 76 (3), 2021.
  • [8] P. Bhunia, S. Jana and K. Paul, Refined inequalities for the numerical radius of Hilbert space operators, https://arxiv.org/abs/2106.13949, 2021.
  • [9] P. Bhunia and K. Paul, Development of inequalities and characterization of equality conditions for the numerical radius, Linear Algebra Appl. 630, 306-315, 2021.
  • [10] P. Bhunia and K. Paul, Some improvement of numerical radius inequalities of operators and operator matrices, Linear Multilinear Algebra, 70 (10), 1995-2013, 2022.
  • [11] P. Bhunia, K. Paul and R.K. Nayak, On inequalities for A-numerical radius of operators, Electron. J. Linear Algebra 36, 143-157, 2020.
  • [12] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17, 413-416, 1966.
  • [13] K. Feki, Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. 11, 929-946, 2020.
  • [14] K. Feki, A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch. Math. 115 (5), 535-544, 2020.
  • [15] K. Feki, Some numerical radius inequalities for semi-Hilbert space operators, J. Korean Math. Soc. 58 (6), 1385-1405, 2021.
  • [16] K. Feki, Improved inequalities related to the A-numerical radius for commutators of operators, Turkish J. Math. 46 (1), 311-322, 2022.
  • [17] M.S. Moslehian, Q. Xu and A. Zamani, Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, Linear Algebra Appl. 591, 299-321, 2020.
  • [18] R.K. Nayak, P. Bhunia and K. Paul, Improvements of A-numerical radius bounds, Hokkaido Math. J. (2022), to appear.
  • [19] N.C. Rout, S. Sahoo and D. Mishra, On A-numerical radius inequalities for $ 2 \times 2 $ operator matrices, Linear Multilinear Algebra, 70 (14), 2672-2692, 2022.
  • [20] A. Saddi, A-normal operators in semi-Hilbertian spaces, Aust. J. Math. Anal. Appl. 9 (1), 12 pp. 2012.
  • [21] A. Zamani, A-numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578, 159-183, 2019.
Hacettepe Journal of Mathematics and Statistics-Cover
  • Yayın Aralığı: 6
  • Başlangıç: 2002
  • Yayıncı: Hacettepe Üniversitesi Fen Fakultesi
Sayıdaki Diğer Makaleler

On the $n$th-Order subfractional Brownian motion

El Omari MOHAMED, Mabdaoui MOHAMED

Inverse problem for differential systems having a singularity and turning point of even or odd order

Seyfollah MOSAZADEH

Semi-slant submanifolds in a locally conformal Kaehler space form

Vittoria BONANZINGA, Koji MATSUMOTO

Adaptive Nadaraya-Watson kernel regression estimators utilizing some non-traditional and robust measures: a numerical application of British food data

Usman SHAHZAD, Ishfaq AHMAD, Ibrahim M ALMANJAHİE, Nadia H. AL – NOOR, Muhammad HANİF

Lower and upper stochastic bounds for the joint stationary distribution of a non-preemptive priority retrial queueing system

Houria HABLAL, Nassim TOUCHE, Lalamaghnia ALEM, Amina Angelika BOUCHENTOUF, Mohamed BOUALEM

On a minimal set of generators for the algebra $H^*(BE_6; \mathbb F_2)$ as a module over the Steenrod algebra and applications

Nguyen Khac TİN

Actions of generalized derivations on prime ideals in $*$-rings with applications

Adnan ABBASİ, Abdul KHAN, Mohammad Salahuddin KHAN

Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach

Habbiburr REHMAN, N. CHANDRA, Ali ABUZAİD

On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting

Salim BOUZEBDA

Weakly $ (k,n) $-absorbing (primary) hyperideals of a Krasner $ (m,n) $-hyperring

Bijan DAVVAZ, Gülşen ULUCAK, Ünsal TEKİR