Seçilmiş Boyar Maddelerin İz Aşındırılmış Çoklu Gözenekli Pet Membanlardan Taşınım Özellikleri

Etkin ayırma ve algılama sağlayabilecek uygulamaların elde edilebilmesi amacıyla iz-aşındırılmış poli (etilen tereftalat) (PET) membranlardan taşınım özellikleri araştırılmıştır. Simetrik ve asimetrik izaşındırma yöntemleri ile PET membranlarda silindirik ve konik nanogözenekler oluşturulmuştur. Elde edilen nanogözenekler yüklü boyar maddelerin taşınımı amacıyla kullanılmıştır. Kristal Viyole boyar maddesi için potansiyel, sıcaklık ve gözenek geometrisinin taşınıma etkileri incelenmiştir. Metil Oranj boyar maddesinin taşınımı da ayrıca incelenmiş ve PET nanogözeneklerinin duvarında bulunan negatif yüklü karboksil grupları ve uygulanan potansiyelin katyonların seçici taşınımını arttırdığı gösterilmiştir. Sıcaklık ve konik geometrinin de katyonların taşınımını arttırdığı bulunmuştur.

Transport Characteristics of Selected Dyes Through Track-Etched Multiporous Pet Membranes

We have investigated the transport properties of track-etched poly(ethylene terephthalate) (PET) membranes in order to pursue possible applications for effective separation and sensing purposes. We have obtained cylindrical and conical nanopores on PET membranes using symmetrical and asymmetrical track-etch methods, respectively. We have used the fabricated nanopores for the transport of charged dye molecules. Effect of applied potential, temperature and pore geometry was shown for crystal violet dye. We have also investigated the transport of methyl orange and shown negatively charged carboxylate groups on the PET nanopore walls along with applied potential enhanced the selective transport of cations. The temperature and the conical geometry were also found to promote the transport of cations.

___

  • Q.H. Nguyen, M. Ali, S. Nasir, W. Ensinger, Transport properties of track-etched membranes having variable effective pore-lengths, Nanotechnology, 26 (2015) 485502.
  • D. Kaya, A. Dinler, N. San, K. Kececi, Effect of Pore Geometry on Resistive-Pulse Sensing of DNA Using Track-Etched PET Nanopore Membrane, Electrochim. Acta, 202 (2016) 157-165.
  • J.E. Wharton, P. Jin, L.T. Sexton, L.P. Horne, S.A. Sherrill, W.K. Mino, C.R. Martin, A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors, Small, 3 (2007) 1424-1430.
  • Molinspiration Cheminformatics Software. 2001, Molinspiration: Nova Ulica, SK-900 26 Slovensky Grob, Slovak Republic.
  • Z. Siwy, P. Apel, D. Baur, D.D. Dobrev, Y.E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K.O. Voss, Preparation of synthetic nanopores with transport properties analogous to biological channels, Surf. Sci., 532 (2003) 1061-1066.
  • K. Kececi, N. San, D. Kaya, Nanopore detection of double stranded DNA using a track-etched polycarbonate membrane, Talanta, 144 (2015) 268- 274.
  • Q.H. Nguyen, M. Ali, V. Bayer, R. Neumann, W. Ensinger, Charge-selective transport of organic and protein analytes through synthetic nanochannels, Nanotechnology, 21 (2010) 365701.
  • M. Ali, B. Yameen, R. Neumann, W. Ensinger, W. Knoll, O. Azzaroni, Biosensing and supramolecular bioconjugation in single conical polymer nanochannels, facile incorporation of biorecognition elements into nanoconfined geometries, J. Am. Chem. Soc., 130 (2008) 16351-16357.
  • E.N. Savariar, K. Krishnamoorthy, S. Thayumanavan, Molecular discrimination inside polymer nanotubules, Nat. Nanotechnol., 3 (2008) 112-117.
  • S. Yu, S.B. Lee, C.R. Martin, Electrophoretic protein transport in gold nanotube membranes, Anal. Chem., 75 (2003) 1239-1244.
  • S.B. Lee, C.R. Martin, Electromodulated molecular transport in gold-nanotube membranes, J. Am. Chem. Soc., 124 (2002) 11850-11851.
  • K.B. Jirage, J.C. Hulteen, C.R. Martin, Effect of thiol chemisorption on the transport properties of gold nanotubule membranes, Anal. Chem., 71 (1999) 4913- 4918.
  • K.B. Jirage, J.C. Hulteen, C.R. Martin, Nanotubulebased molecular-filtration membranes, Science, 278 (1997) 655-658.
  • S.B. Lee, C.R. Martin, pH-Switchable, ionpermselective gold nanotubule membrane based on chemisorbed cysteine, Anal. Chem., 73 (2001) 768- 775.
  • G.F. Schneider, S.W. Kowalczyk, V.E. Calado, G. Pandraud, H.W. Zandbergen, L.M. Vandersypen, C. Dekker, DNA translocation through graphene nanopores, Nano Lett., 10 (2010) 3163-3167.
  • C.J. Lo, T. Aref, A. Bezryadin, Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams, Nanotechnology, 17 (2006) 3264.
  • S. Kipke, G. Schmid, Nanoporous alumina membranes as diffusion controlling systems, Adv. Funct. Mater., 14 (2004) 1184-1188.
  • L. Velleman, G. Triani, P.J. Evans, J.G. Shapter, D. Losic, Structural and chemical modification of porous alumina membranes, Microporous Mesoporous Mater., 126 (2009) 87-94.
  • T.A. Desai, S. Sharma, R.J. Walczak, A. Boiarski, M. Cohen, J. Shapiro, T. West, K. Melnik, C. Cosentino, P.M. Sinha, Nanoporous implants for controlled drug delivery, BioMEMS and Biomedical Nanotechnology Volume III, Springer, Berlin, Germany, 2006.
  • S.P. Adiga, C. Jin, L.A. Curtiss, N.A. Monteiro‐Riviere, R.J. Narayan, Nanoporous membranes for medical and biological applications, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 1 (2009) 568-581.
  • T.C. Kuo, L.A. Sloan, J.V. Sweedler, P.W. Bohn, Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow: effect of surface charge density and Debye length, Langmuir, 17 (2001) 6298-6303.
  • H. Bayley, Are we there yet ? Comment on “Nanopores: A journey towards DNA sequencing” by Meni Wanunu, Phys. Life Rev., 9 (2012) 161-163.
  • C.A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M.D. Fischbein, K. Venta, Z. Luo, A.C. Johnson, DNA translocation through graphene nanopores, Nano Lett., 10 (2010) 2915-2921.
  • D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett., 12 (2012) 3602-3608.
  • A. Mara, Z. Siwy, C. Trautmann, J. Wan, F. Kamme, An Asymmetric Polymer Nanopore for Single Molecule Detection, Nano Lett., 4 (2004) 497-501.
  • A. Kocer, L. Tauk, P. Dejardin, Nanopore sensors: From hybrid to abiotic systems, Biosens. Bioelectron., 38 (2012) 1-10.
  • V. Chavan, C. Agarwal, A.K. Pandey, J.P. Nair, P. Surendran, P.C. Kalsi, A. Goswami, Controlled development of pores in polyethylene terepthalate sheet by room temperature chemical etching method, J. Memb. Sci., 471 (2014) 185-191.
  • P.Y. Apel, I.V. Blonskaya, O.L. Orelovitch, B.A. Sartowska, R. Spohr, Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements, Nanotechnology, 23 (2012) 225503
  • P.Y. Apel, Y.E. Korchev, Z. Siwy, R. Spohr, M. Yoshida, Diode-like single-ion track membrane prepared by electro-stopping, Nucl. Instrum. Methods Phys. Res. B., 184 (2001) 337-346.
  • N. Patterson, D. Adams, V. Hodges, M. Vasile, J. Michael, P. Kotula, Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection, Nanotechnology, 19 (2008) 235304.
  • J. He, L. Lin, P. Zhang, S. Lindsay, Identification of DNA basepairing via tunnel-current decay, Nano Lett., 7 (2007) 3854-3858.
  • N.L. Kazanskiy, S.P. Murzin, Y.L. Osetrov, V.I. Tregub, Synthesis of nanoporous structures in metallic materials under laser action, Opt. Lasers Eng., 49 (2011) 1264-1267.
  • A.G. Ahmadi, S. Nair, Geometry of nanopore devices fabricated by electron beam lithography: Simulations and experimental comparisons, Microelectron. Eng., 112 (2013) 149-156.
  • H.M. Kim, M.H. Lee, K.B. Kim, Theoretical and experimental study of nanopore drilling by a focused electron beam in transmission electron microscopy, Nanotechnology, 22 (2011) 275303.
  • K.K. Hu, Y.X. Wang, H.J. Cai, M.V. Mirkin, Y. Gao, G. Friedman, Y. Gogotsi, Open Carbon Nanopipettes as Resistive-Pulse Sensors, Rectification Sensors, and Electrochemical Nanoprobes, Anal. Chem., 86 (2014) 8897-8901.
  • C. Dekker, Solid-state nanopores, Nat. Nanotechnol., 2 (2007) 209-215.
  • S.M. Bezrukov, M. Winterhalter, Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel, PRL, 85 (2000) 202.
  • J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. U.S.A., 93 (1996) 13770-13773.
  • S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Söderlund, C.R. Martin, Antibody-based bio-nanotube membranes for enantiomeric drug separations, Science, 296 (2002) 2198-2200.
  • A.S. Prabhu, T.Z.N. Jubery, K.J. Freedman, R. Mulero, P. Dutta, M.J. Kim, Chemically modified solid state nanopores for high throughput nanoparticle separation, J. Phys. Condens. Matter, 22 (2010) 454107.
  • S.G. Lemay, Nanopore-based biosensors: the interface between ionics and electronics, ACS nano, 3 (2009) 775-779.
  • H. Hatori, H. Takagi, Y. Yamada, Gas separation properties of molecular sieving carbon membranes with nanopore channels, Carbon, 42 (2004) 1169-1173.