Moleküler Baskılanmış Polimerik Nanoyapıları ile Yapay İnsan Plazmasından Kolesterol Adsorpsiyonu

Bu çalışma, farklı kalıp-monomer oranları kullanılarak hazırlanmış MIP nanoyapıları ile yapay insan plazmasından kolesterol adsorpsiyonunu sunmaktadır. CP’nin adsorpsiyon kapasitesi C3P ve CP3’e göre sırayla %19,9 ve %16,1 daha yüksektir ve CP’nin adsorpsiyon kapasitesi NIP nanoyapılarına göre önemli derecede yüksektir. Tüm seçicilik katsayıları ve bağıl seçicilik değerleri yapay insan plazması için 1’den büyüktür. Optimum koşullarda, hiperkolesterolemik plazmadan oldukça yüksek kolesterol (%95.33) adsorplanmıştır.

Cholesterol Adsorption from Artificial Human Plasma with Molecular Imprinted Polymeric Nanostructures

This study reports cholesterol adsorption from artificial human plasma using MIP nanostructures prepared with different template:monomer ratios. The adsorption capacity of CP is 19.9% and 16.1% higher than those of C3P and CP3, respectively and adsorption capacity of CP is significantly higher than NIP nanostructures. All selectivity coefficients and relative selectivity values were higher than 1 for artificial human plasma. Under optimum conditions, considerably high cholesterol was adsorbed from hypercholesterolemic plasma (95.33 %).

___

  • L. Navakova, P. Solich, L. Matysova, J. Sıcha, HPLC determination of estradiol, its degradation product, and preservatives in new topical formulation estrogel HBF, Anal. Bioanal. Chem., 379 (2004) 781-787.
  • T. Inanan, N. Tuzmen, S. Akgöl, A. Denizli, Selective cholesterol adsorption by molecular imprinted polymeric nanospheres and application to GIMS, Int. J. Biol. Macromolec., 92 (2016) 451-460.
  • X. Li, M. Li, J. Li, F. Lei, X. Su, X. Liu, P. Li, X. Tan, Synthesis and characterization of molecularly imprinted polymers with modified rosin as a cross linker and selective SPE-HPLC detection of basic orange II in foods, Anal. Met., 6 (2014) 6397-6406.
  • R. Say, S. Emir, B. Garipcan, S. Patir, A. Denizli, Novel methacryloylamidophenylalanine functionalized porous chelating beads for adsorption of heavy metal ions, Adv. Polym. Tech., 22 (2003) 355-364.
  • M.A. Gore, R.N. Karmalkar, M.G. Kulkarni, Enhanced capacities and selectivities for cholesterol in aqueous media by molecular imprinting: role of novel crosslinkers, J. Chromatog. A, 804 (2004) 211-221.
  • R. Gupta, A. Kumar, Synthesis and characterization of sol–gel-derived molecular imprinted polymeric materials for cholesterol recognition, J. Sol-Gel Sci. Technol., 58 (2011) 182-194.
  • Y. Tong, H. Guan, S. Wang, J. Xu, J. He, Syntheses of chitin-based imprinting polymers and their binding properties for cholesterol, Carbohyd. Res., 346 (2011) 495-500.
  • A. Zengin, E. Yildirim, U. Tamer, T. Caykara, Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol, Analyst, 138 (2013) 7238-7245.
  • D.N. Clausen, I.M.R. Pires, C.R.T. Tarley, Improved selective cholesterol adsorption by molecularly imprinted poly(methacrylic acid)/silica (PMAA–SiO2) hybrid material synthesized with different molar ratios, Mat. Sci. Eng. C, 44 (2014) 99-108.
  • E.E.G. Rojas, J.S.D. Coimbra, L.A. Minim, Adsorption of egg yolk plasma cholesterol using a hydrophobic adsorbent, Eur. Food Res. Technol., 223 (2006) 705- 709.
  • A. Sinha, S. Basiruddin, A. Chakraborty, N.R. Jana, Cyclodextrin functionalized magnetic mesoporous silica colloid for cholesterol separation, ACS Appl. Mater. Interfac., 7 (2015) 1340-1347.
  • Y. Su, Y. Tian, R. Yan, C. Wang, F. Niu, Y. Yang, Study on a novel process for the separation of phospholipids, triacylglycerol and cholesterol from egg yolk, J. Food Sci. Technol., 52 (2015) 4586-4592.
  • M.M. Jimenez-Carmona, M.D.L. de Castro, Reverse micelle formation for acceleration of the supercritical fluid extraction of cholesterol from food samples, Anal. Chem., 70 (1998) 2100-2103.
  • A. Aghaei, M.R.M. Hosseini, M. Najafi, A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer, Electrochimica Acta, 55 (2010) 1503-1508.
  • L. Chen, S. Xu, X. Li, Recent advances in molecular imprinting technology: current status, challenges and highlighted applications, Chem. Soc. Rev., 40 (2011) 2922-2942.
  • E. Turiel, A. Martin-Esteban, Molecularly imprinted polymers for sample preparation: a review, Anal. Chim. Acta, 66 (2010) 887-899.
  • S. Aşir, D. Sari, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine imprinted monolithic column for capillary electrochromatography, Electrophoresis, 0 (2017) 1-10.
  • G. Sener, E. Ozgur, E. Yılmaz, L. Uzun, R. Say, A. Denizli, Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles. Biosens. Bioelectron., 26 (2010) 815- 821.
  • L.I. Andersson, Molecular imprinting for drug bioanalysis A review on the application of imprinted polymers to solid-phase extraction and binding assay, J. Chromatogr. B, 739 (2000)163-173.
  • X. Sun, J. Wang, Y. Li, J. Yang, J. Jin, S.M. Shah, J. Chen, Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples, J. Chromatog. A, 1359 (2014) 1-7.
  • A.G. Sarıkaya, B. Osman, T. Çam, A. Denizli, Molecularly imprinted surface plasmon resonance (SPR) sensor for uric acid determination, Sens. Actuators B Chem., 251 (2017) 763-772.
  • Y. Saylan, S. Akgönüllü, D. Çimen, A. Derazshamshir, N. Bereli, F. Yılmaz, A. Denizli, Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides, Sens. Actuators B Chem., 241 (2017) 446-454.
  • C.H. Hu, T.C. Chou, Albumin molecularly imprinted polymer with high template affinity-prepared by systematic optimization in mixed organic/aqueous media, Microchem. J., 91 (2009) 53-58.
  • E. Yılmaz, K. Mosbach, K. Haupt, Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays, Anal. Commun., 36 (1999) 167-170.
  • R. Say, A. Ersöz, İ. Şener, A. Atılır, S. Diltemiz, A. Denizli, Comparison of adsorption and selectivity characteristics for 4 nitrophenol imprinted polymers prepared via bulk and suspension polymerization, Sep. Sci. Technol., 39 (2004) 3471-3484.
  • A. Ersöz, A. Denizli, İ. Şener, A. Atılır, S. Diltemiz, R. Say, Removal of phenolic compounds with nitrophenolimprinted polymer based on p-p and hydrogenbonding interactions, Sep. Purif. Technol., 38 (2004) 173-179.
  • E. Caro, N. Masque, R.M. Marce, F. Borrull, P.A.G. Cormack, D.C. Sherington, Non-covalent and semicovalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples, J. Chromatog. A, 963 (2002) 169-178.
  • 10. C. Hwang, W.C. Lee, Chromatographic characteristics of cholesterol imprinted polymers prepared by covalent and non-covalent imprinting methods, J. Chromatogr. A, 962 (2002) 69-78.
  • F. Lanza, A.J. Hall, B. Sellergen, A. Bereczki, G. Horvai, S. Bayoudh, P.A.G. Cormack, D.C. Sherington, Development of semiautomated procedure for the synthesis and evaluation of molecularly imprinted polymers applied to the search for functional polymers for phenytoin and nifedipine, Anal. Chim. Acta, 435 (2001) 91-106.
  • J. Yang, Z. Wang, T. Zhou, X. Song, Q. Liu, Y. Zhang, L. He, Determination of cyproheptadine in feeds using molecularly imprinted solid-phase extraction coupled with HPLC, J. Chromatogr. B, 990 (2015) 39-44.
  • E. Verheyen, J.P. Schillemans, M. Wijk, M.A. Demeniex, W.E. Hennink, C.F. Nostrum, Challenges for the effective molecular imprinting of proteins, Biomaterials, 32 (2011) 3008-3020.
  • M. Andaç, I.Y. Galaev, A. Denizli, Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, J. Chromatogr. B, 1021 (2016) 69-80.
  • X. Kong, R. Gao, X. He, L. Chen, Y. Zhang, Synthesis and characterization of the core–shell magnetic molecularly imprinted polymers (Fe3O4@MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed, J. Chromatogr. A, 1245 (2012) 8-16.
  • C. Lu, H. Li, M. Xu, S. Wang, G. Li, W. Zhong, S.Qin, Preparation of nicotine-imprinted monolith by insitu surface imprinting onto internal hole surface of macroporous silica for selective enrichment and separation of nicotine in environmental water sample, Sep. Sci. Technol., 50 (2015) 2124-2133.
  • M. Behbahani, S. Bagheri, M.M. Amini, H.S. Abandansari, H.R. Moazami, A. Bagheri, Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples, J. Sep. Sci., 37 (2014) 1610-1616.
  • J. Ding, F. Zhang, X. Zhang, L. Wang, C. Wang, Q. Zhao, Y. Xu, L. Ding, N. Ren, Determination of roxithromycin from human plasma samples based on magnetic surface molecularly imprinted polymers followed by liquid chromatography-tandem mass spectrometer, J. Chromatogr. B, 1021 (2016) 221-228.
  • X. Xu, S. Liang, X. Meng, M. Zhang, Y. Chen, D. Zhao, Y. Li, A molecularly imprinted polymer for the selective solid-phase extraction of dimethomorph from ginseng samples, J. Chromatogr. B, 988 (2015) 182-186.
  • S.N. Hashim, R.I. Boysen, L.J. Schwarz, B. Danylec, M.T. Hearn, A comparison of covalent and noncovalent imprinting strategies for the synthesis of stigmasterol imprinted polymers, J. Chromatogr. A, 1359 (2014) 35-43.
  • N. Bereli, G. Şener, H. Yavuz, A. Denizli. Oriented immobilized anti-LDL antibody carrying poly(hydroxyethyl methacrylate) cryogel for cholesterol removal from human plasma, Mater. Sci. Eng. C, 31 (2011) 1078–1083.
  • E. Salehi, S. Afshar, M.Z. Mehrizi, A. Chehrei, M. Asadi, Direct reduction of blood serum cholesterol using Thymus vulgaris L.: Preliminary biosorption study, Process Bichem., accepted manuscript
  • S.H. Chiu, T.W. Chung, R. Giridhar, W.T. Wu, Immobilization of b-cyclodextrin in chitosan beads for separation of cholesterol from egg yolk, Food Res. Int., 37 (2004) 217-223.
  • H.M.A.M. Dias, F. Berbicz, F. Pedrochi, M.L. Baesso, G. Matioli, Butter cholesterol removal using different complexation methods with beta-cyclodextrin, and the contribution of photoacoustic spectroscopy to the evaluation of the complex, Food Res. Int., 43 (2010) 1104–1110.
  • I. Polyakova, L. Borovikova, A. Osipenko, E. Vlasova, B. Volchek, O. Pisarev, Surface molecularly imprinted organic-inorganic polymers having affinity sites for cholesterol, React. Funct. Polym., 109 (2016) 88-98.
  • Yun S., J.H. Zhang, D.Shi, M. Jiang, Y.X. Zhu, S.R. Mei, Y.K. Zhou, K. Dai, B. Lu, Selective solid-phase extraction of cholesterol using molecularly imprinted polymers and its application in different biological samples, J. Pharm. Biomed. Anal., 42 (2006) 549– 555.
  • M. Odabaşı, L. Uzun, G. Baydemir, N.H. Aksoy, Ö. Acet, D. Erdönmez, Cholesterol imprinted composite membranes for selective cholesterolrecognition from intestinal mimicking solution, Colloids Surf. B Biointer., 163 (2018) 266–274.
  • H. Yavuz, V. Karakoç, D. Türkmen, R. Say, A. Denizli, Synthesis of cholesterol imprinted polymeric particles, Int. J. Biol. Macromol., 41 (2007) 8-15.
  • K. Çaktü, G. Baydemir, B. Ergün, H. Yavuz, Cholesterol removal from various samples by cholesterolimprinted monosize microsphere-embedded cryogels, Artif. Cells Nanomed. Biotechnol., 42 (2014) 365-375.
  • G.R. Oliveira, A.V. Santos, A.S. Lima, C.M.F. Soares, M.S. Leite, Neural modelling in adsorption column of cholesterol-removal efficiency from milk, LWT- Food Science and Technol., 64 (2015) 632-638.
  • D.K. Lee, J. Ahn, H.S. Kwak, Cholesterol removal from homogenized milk with β-cyclodextrin, J Dairy Sci., 82 (1999) 2327-2330.
  • H.S. Andersson, J.G. Karlsson, S.A. Piletsky, A.C. Koch-Schmidt, K. Mosbach, I.A. Nicholls, Study of the nature of recognition in molecularly imprinted polymers, influence of monomer–template ratio and sample load on retention and selectivity, J. Chromatogr. A, 848 (1999) 39-49.