Cholesterol Adsorption from Artificial Human Plasma with Molecular Imprinted Polymeric Nanostructures

This study reports cholesterol adsorption from artificial human plasma using MIP nanostructures prepared with different template:monomer ratios. The adsorption capacity of CP is 19.9% and 16.1% higher than those of C3P and CP3, respectively and adsorption capacity of CP is significantly higher than NIP nanostructures. All selectivity coefficients and relative selectivity values were higher than 1 for artificial human plasma. Under optimum conditions, considerably high cholesterol was adsorbed from hypercholesterolemic plasma (95.33 %). 

___

  • S.N. Hashim, R.I. Boysen, L.J. Schwarz, B. Danylec, M.T. Hearn, A comparison of covalent and noncovalent imprinting strategies for the synthesis of stigmasterol imprinted polymers, J. Chromatogr. A, 1359 (2014) 35-43
  • E. Verheyen, J.P. Schillemans, M. Wijk, M.A. Demeniex, W.E. Hennink, C.F. Nostrum, Challenges for the effective molecular imprinting of proteins, Biomaterials, 32 (2011) 3008-3020.
  • M. Behbahani, S. Bagheri, M.M. Amini, H.S. Abandansari, H.R. Moazami, A. Bagheri, Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples, J. Sep. Sci., 37 (2014) 1610-1616.
  • C. Lu, H. Li, M. Xu, S. Wang, G. Li, W. Zhong, S.Qin, Preparation of nicotine-imprinted monolith by insitu surface imprinting onto internal hole surface of macroporous silica for selective enrichment and separation of nicotine in environmental water sample, Sep. Sci. Technol., 50 (2015) 2124-2133.
  • J. Ding, F. Zhang, X. Zhang, L. Wang, C. Wang, Q. Zhao, Y. Xu, L. Ding, N. Ren, Determination of roxithromycin from human plasma samples based on magnetic surface molecularly imprinted polymers followed by liquid chromatography-tandem mass spectrometer, J. Chromatogr. B, 1021 (2016) 221-228.
  • X. Xu, S. Liang, X. Meng, M. Zhang, Y. Chen, D. Zhao, Y. Li, A molecularly imprinted polymer for the selective solid-phase extraction of dimethomorph from ginseng samples, J. Chromatogr. B, 988 (2015) 182-186.
  • X. Kong, R. Gao, X. He, L. Chen, Y. Zhang, Synthesis and characterization of the core–shell magnetic molecularly imprinted polymers (Fe3O4@MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed, J. Chromatogr. A, 1245 (2012) 8-16.
  • M. Andaç, I.Y. Galaev, A. Denizli, Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, J. Chromatogr. B, 1021 (2016) 69-80.
  • J. Yang, Z. Wang, T. Zhou, X. Song, Q. Liu, Y. Zhang, L. He, Determination of cyproheptadine in feeds using molecularly imprinted solid-phase extraction coupled with HPLC, J. Chromatogr. B, 990 (2015) 39-44.
  • C. Hwang, W.C. Lee, Chromatographic characteristics of cholesterol imprinted polymers prepared by covalent and non-covalent imprinting methods, J. Chromatogr. A, 962 (2002) 69-78.
  • E. Caro, N. Masque, R.M. Marce, F. Borrull, P.A.G. Cormack, D.C. Sherington, Non-covalent and semicovalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples, J. Chromatog. A, 963 (2002) 169-178.
  • F. Lanza, A.J. Hall, B. Sellergen, A. Bereczki, G. Horvai, S. Bayoudh, P.A.G. Cormack, D.C. Sherington, Development of semiautomated procedure for the synthesis and evaluation of molecularly imprinted polymers applied to the search for functional polymers for phenytoin and nifedipine, Anal. Chim. Acta, 435 (2001) 91-106.
  • A. Ersöz, A. Denizli, İ. Şener, A. Atılır, S. Diltemiz, R. Say, Removal of phenolic compounds with nitrophenolimprinted polymer based on p-p and hydrogenbonding interactions, Sep. Purif. Technol., 38 (2004) 173-179.
  • R. Say, A. Ersöz, İ. Şener, A. Atılır, S. Diltemiz, A. Denizli, Comparison of adsorption and selectivity characteristics for 4 nitrophenol imprinted polymers prepared via bulk and suspension polymerization, Sep. Sci. Technol., 39 (2004) 3471-3484.
  • E. Yılmaz, K. Mosbach, K. Haupt, Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays, Anal. Commun., 36 (1999) 167-170.
  • C.H. Hu, T.C. Chou, Albumin molecularly imprinted polymer with high template affinity-prepared by systematic optimization in mixed organic/aqueous media, Microchem. J., 91 (2009) 53-58.
  • X. Sun, J. Wang, Y. Li, J. Yang, J. Jin, S.M. Shah, J. Chen, Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples, J. Chromatog. A, 1359 (2014) 1-7.
  • S. Aşir, D. Sari, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine imprinted monolithic column for capillary electrochromatography, Electrophoresis, 0 (2017) 1-10.
  • A.G. Sarıkaya, B. Osman, T. Çam, A. Denizli, Molecularly imprinted surface plasmon resonance (SPR) sensor for uric acid determination, Sens. Actuators B Chem., 251 (2017) 763-772.
  • G. Sener, E. Ozgur, E. Yılmaz, L. Uzun, R. Say, A. Denizli, Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles. Biosens. Bioelectron., 26 (2010) 815- 821.
  • Y. Saylan, S. Akgönüllü, D. Çimen, A. Derazshamshir, N. Bereli, F. Yılmaz, A. Denizli, Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides, Sens. Actuators B Chem., 241 (2017) 446-454.
  • L.I. Andersson, Molecular imprinting for drug bioanalysis A review on the application of imprinted polymers to solid-phase extraction and binding assay, J. Chromatogr. B, 739 (2000)163-173.
  • E. Turiel, A. Martin-Esteban, Molecularly imprinted polymers for sample preparation: a review, Anal. Chim. Acta, 66 (2010) 887-899.
  • L. Chen, S. Xu, X. Li, Recent advances in molecular imprinting technology: current status, challenges and highlighted applications, Chem. Soc. Rev., 40 (2011) 2922-2942.
  • A. Aghaei, M.R.M. Hosseini, M. Najafi, A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer, Electrochimica Acta, 55 (2010) 1503-1508.
  • A. Sinha, S. Basiruddin, A. Chakraborty, N.R. Jana, Cyclodextrin functionalized magnetic mesoporous silica colloid for cholesterol separation, ACS Appl. Mater. Interfac., 7 (2015) 1340-1347.
  • Y. Su, Y. Tian, R. Yan, C. Wang, F. Niu, Y. Yang, Study on a novel process for the separation of phospholipids, triacylglycerol and cholesterol from egg yolk, J. Food Sci. Technol., 52 (2015) 4586-4592.
  • D.N. Clausen, I.M.R. Pires, C.R.T. Tarley, Improved selective cholesterol adsorption by molecularly imprinted poly(methacrylic acid)/silica (PMAA–SiO2) hybrid material synthesized with different molar ratios, Mat. Sci. Eng. C, 44 (2014) 99-108.
  • M.M. Jimenez-Carmona, M.D.L. de Castro, Reverse micelle formation for acceleration of the supercritical fluid extraction of cholesterol from food samples, Anal. Chem., 70 (1998) 2100-2103.
  • E.E.G. Rojas, J.S.D. Coimbra, L.A. Minim, Adsorption of egg yolk plasma cholesterol using a hydrophobic adsorbent, Eur. Food Res. Technol., 223 (2006) 705- 709.
  • A. Zengin, E. Yildirim, U. Tamer, T. Caykara, Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol, Analyst, 138 (2013) 7238-7245.
  • Y. Tong, H. Guan, S. Wang, J. Xu, J. He, Syntheses of chitin-based imprinting polymers and their binding properties for cholesterol, Carbohyd. Res., 346 (2011) 495-500.
  • R. Gupta, A. Kumar, Synthesis and characterization of sol–gel-derived molecular imprinted polymeric materials for cholesterol recognition, J. Sol-Gel Sci. Technol., 58 (2011) 182-194.
  • R. Say, S. Emir, B. Garipcan, S. Patir, A. Denizli, Novel methacryloylamidophenylalanine functionalized porous chelating beads for adsorption of heavy metal ions, Adv. Polym. Tech., 22 (2003) 355-364.
  • T. Inanan, N. Tuzmen, S. Akgöl, A. Denizli, Selective cholesterol adsorption by molecular imprinted polymeric nanospheres and application to GIMS, Int. J. Biol. Macromolec., 92 (2016) 451-460.
  • L. Navakova, P. Solich, L. Matysova, J. Sıcha, HPLC determination of estradiol, its degradation product, and preservatives in new topical formulation estrogel HBF, Anal. Bioanal. Chem., 379 (2004) 781-787.
  • M.A. Gore, R.N. Karmalkar, M.G. Kulkarni, Enhanced capacities and selectivities for cholesterol in aqueous media by molecular imprinting: role of novel crosslinkers, J. Chromatog. A, 804 (2004) 211-221.
  • X. Li, M. Li, J. Li, F. Lei, X. Su, X. Liu, P. Li, X. Tan, Synthesis and characterization of molecularly imprinted polymers with modified rosin as a cross linker and selective SPE-HPLC detection of basic orange II in foods, Anal. Met., 6 (2014) 6397-6406.
  • H.S. Andersson, J.G. Karlsson, S.A. Piletsky, A.C. Koch-Schmidt, K. Mosbach, I.A. Nicholls, Study of the nature of recognition in molecularly imprinted polymers, influence of monomer–template ratio and sample load on retention and selectivity, J. Chromatogr. A, 848 (1999) 39-49.
  • G.R. Oliveira, A.V. Santos, A.S. Lima, C.M.F. Soares, M.S. Leite, Neural modelling in adsorption column of cholesterol-removal efficiency from milk, LWT- Food Science and Technol., 64 (2015) 632-638.
  • D.K. Lee, J. Ahn, H.S. Kwak, Cholesterol removal from homogenized milk with β-cyclodextrin, J Dairy Sci., 82 (1999) 2327-2330.
  • K. Çaktü, G. Baydemir, B. Ergün, H. Yavuz, Cholesterol removal from various samples by cholesterolimprinted monosize microsphere-embedded cryogels, Artif. Cells Nanomed. Biotechnol., 42 (2014) 365-375.
  • H. Yavuz, V. Karakoç, D. Türkmen, R. Say, A. Denizli, Synthesis of cholesterol imprinted polymeric particles, Int. J. Biol. Macromol., 41 (2007) 8-15.
  • M. Odabaşı, L. Uzun, G. Baydemir, N.H. Aksoy, Ö. Acet, D. Erdönmez, Cholesterol imprinted composite membranes for selective cholesterolrecognition from intestinal mimicking solution, Colloids Surf. B Biointer., 163 (2018) 266–274.
  • H.M.A.M. Dias, F. Berbicz, F. Pedrochi, M.L. Baesso, G. Matioli, Butter cholesterol removal using different complexation methods with beta-cyclodextrin, and the contribution of photoacoustic spectroscopy to the evaluation of the complex, Food Res. Int., 43 (2010) 1104–1110.
  • S.H. Chiu, T.W. Chung, R. Giridhar, W.T. Wu, Immobilization of b-cyclodextrin in chitosan beads for separation of cholesterol from egg yolk, Food Res. Int., 37 (2004) 217-223.
  • E. Salehi, S. Afshar, M.Z. Mehrizi, A. Chehrei, M. Asadi, Direct reduction of blood serum cholesterol using Thymus vulgaris L.: Preliminary biosorption study, Process Bichem., accepted manuscript
  • I. Polyakova, L. Borovikova, A. Osipenko, E. Vlasova, B. Volchek, O. Pisarev, Surface molecularly imprinted organic-inorganic polymers having affinity sites for cholesterol, React. Funct. Polym., 109 (2016) 88-98.
  • N. Bereli, G. Şener, H. Yavuz, A. Denizli. Oriented immobilized anti-LDL antibody carrying poly(hydroxyethyl methacrylate) cryogel for cholesterol removal from human plasma, Mater. Sci. Eng. C, 31 (2011) 1078–1083.
  • Yun S., J.H. Zhang, D.Shi, M. Jiang, Y.X. Zhu, S.R. Mei, Y.K. Zhou, K. Dai, B. Lu, Selective solid-phase extraction of cholesterol using molecularly imprinted polymers and its application in different biological samples, J. Pharm. Biomed. Anal., 42 (2006) 549– 555.