İnsan Plazma ve Eritrosit AChE’nin Çeşitli İlaçlarla in Vitro İnhibisyonu

B u çalışmada; yapısal olarak farklı olan sekiz antibiyotik sefazolin, kanamisin, gentamisin, klindamisin, ivermektin ve ampisilin ve ağrı kesicinin metamizol ve diklofenak insan eritrosit ve plazma asetilkolinesteraz AChE; EC 3.1.1.7 enzimi üzerine in vitro etkileri araştırılmıştır. Bu amaçla; farklı derişimlere sahip ilaçların neden olduğu inhibisyonu belirlemek için ilaçların IC50 ve KI değerleri hesaplandı. Asetilkolinesteraz aktivitesi spektrofotometrik olarak Ellman yöntemiyle belirlendi. Daha sonra, ilaçlara maruz kalan enzim aktivitesi ölçüldü. AChE aktivitesine karşı ilaç derişimi ve Michealis-Menten grafikleri çizildi. Son olarak, bu grafikler yardımıyla IC ve K değerleri hesaplandı. IC değerleri, plazma AChE’sine diklofenak için 1.78 x10-8 M ve eritrosit AChE’sine gentamisin için 0.85 x10-8 M olduğu belirlendi. KI değerleri ise diklofenak için 1.36 x10-8 M ve gentamisin için 1.16 x10-8 M olarak hesaplandı. Ayrıca, ivermektin, klindamisin, kanamisin, ampisilin için ICve KI değerleri elde edildi. Diklofenak, plazma AChE aktivitesi üzerine gentamisin de eritrosit AChE aktivitesi üzerine en yüksek inhibitör etkisi göstermiştir. Bulunan bu değerlerin daha önce yapılan benzer çalışmalardaki inhibisyon değerlerinden daha yüksek olduğu görülmektedir [1,2]

In Vitro Inhibition of Human Plasma and Erythrocyte AChE by Various Drugs

In the present study, the in vitro effects of eight structurally different antibiotics cefazolin, kanamycin, gentamicin, clindamycin, ivermectin and ampicillin and painkiller metamizole and diclofenac on human erythrocyte and plasma acetylcholinesterase activity AChE; EC 3.1.1.7 were investigated. For this, IC50 and KI values of the drugs were calculated for determining the inhibition caused by these drugs. Acetylcholinesterase activity was determined spectrophotometrically, according to Ellman’s method. Then the enzyme activity exposed to the drugs with different concentrations was measured. AChE activity vs. drug concentration and Mihealis-Menten graphs were obtained. Lastly, IC50 and KI values were estimated from these graphs. IC50 values were estimated to be 1.78 x10-8 M of diclofenac for plasma AChE and 0.85x10-8 M of gentamicin for erythrocyte AChE. K values were 1.36 x10-8 M for diclofenac and 1.16 x10-8 M for gentamicin. Also, IC50 and KI values for ivermectin, clindamycin, kanamycin, ampicillin were obtained. Diclofenac exhibited the highest inhibitory effect on plasma AChE activity. On the other hand, gentamicin showed the highest inhibitory effect on erythrocyte AChE activity, which seems to be better for inhibition of AChE than those reported previously.

___

  • O. Danis ¸ B. Yuce-Dursun, T. Cimen, S. Demir, U. Salan, G. Yalcin, A. Ogan, Evaluation of antioxidant, radical- scavenging and acetylcholinesterase inhibitory activities of various culinary herbs cultivated in southern Turkey, Food Biochem. J., 438 (2001) 602– 611.
  • A. Spinedi, L. Pacini, P. Luly, A study of the mechanism by which some amphiphilic drugs affect human erythrocyteacetylcholinesterase activity, Biochem. J., 261 (1989) 569-573.
  • B.D. Siegfried, J.G. Scott, Properties and inhibition of acetylcholinesterase in resistant and susceptible German cockroaches (Blattellagermanica L.), Pest. Biochem. Physiol., 38 (1990) 122-129.
  • G.B. Principato, S. Contenti, V. Talesa, C. Mangiabene, R. Pascoloni, G. Rosi, Proprionylcholinesterase from Allobophoracalignosa, Comp. Biochem. Physiol., 94 (1989) 23–27.
  • B.W. Wilson, I.K. Robert, C.K. William, Cholinesterases, in Handbook of pesticide toxicology, Second edition, Academic Press, San Diego, California, USA, 967– 985, 2001
  • A.A. Al-Qarawi, B.H. Ali, Variations in the normal activity of esterases in plasma and liver of camels (Camelusdromedarius), cattle (Bosindicus), sheep (Ovisaries) and goats (Capra hircus), J. Vet. Med., 50 (2003) 201–203.
  • D. Milatovic, W.D. Dettbarn, Modification of acetylcholinesterase during adaptation to chronic, subacute paraoxon application in rat, Toxicol App. Pharmacol., 136 (1996) 20-28.
  • J. Massoulie, S. Bon, The molecular forms of cholinesterase and acetylcholinesterase in vertebrates, Ann. Rev. Neurosci., 5 (1982) 57-106.
  • D. Nachmansohn, I.B. Wilson, The enzymic hydrolysis and synthesis of acetylcholine, Adv. Enzymol. Relat. Subj. Biochem., 12 (1951) 259–339.
  • V. Chhajlan, D. Derr, B. Earles, E. Schmell, T. August, Purification and partial amino acid sequence analysis of human erythrocyte acetylcholinesterase, FEBS Lett., 247 (1989) 279–282.
  • T.A. Dutta-Choudhary, T.L. Rosenberry, Human erythrocyte acetylcholinesterase is an amphipathic protein whose short membrane-binding domain is removed by papain digestion, J. Biolog. Chem. , 259 (1984) 5653–5660.
  • J. Massoulie, J.P. Toutant, Vertebratecholinesterases: structure and types of interactions, Hand. Exp. Pharmacol., 86 (1998) 167–224.
  • J.,Massoulie, L. Pezzementi, S. Bon, E. Krejci, F.M. Vallette, Molecular and cellular biology of cholinesterases, Prog. Neurobiol., 41 (1993) 31–91.
  • P. Masson, O. Lockridge, Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior, Arch. Biochem. Biophys., 494 (2010) 107-120.
  • X. Chen, L. Fang, J. Liu, C.G. Zhan, Reaction pathway and free energy profiles for butyrylcholinesterase- catalyzed hydrolysis of acetylthiocholine, Biochem., 51 (2012) 1297–1305.
  • E. Giacobini, Cholinesterase inhibitors: new roles and therapeutic alternatives, Pharmacol. Res., 4 (2004) 433–440.
  • S. Snavely, G. Hodges, The neurotoxicity of 25. A.M. Siebela, E.P. Rico K.M. Capiotti, A.L. Piato, C.T. antibacterial agents, Ann. Intern. Med., 101 (1984) 92–104.
  • K.M. Chow, K.C. Hui, C.C. Szetp, Neurotoxicity induced by beta-lactam antibiotics: from bench to bedside, Eur. J. Clin. Microbiol. Infect. Dis., 24 (2005) 649–653.
  • M.F. Grill, R.K. Maganti, Neurotoxic effects associated with antibiotic use: management considerations, Br. J. Clin. Pharmacol., 72 (2011) 381–393.
  • K. Chow, C.C. Szeto, A.C. Hui, P.K. Li, Mechanisms of antibiotic neurotoxicity in renal failure, Intern. J. Antimic. Age., 23 (2004) 213–217.
  • E. Edward, M.D. Morse, Toxic effects of drugs on erythrocytes, Ann. Clin. Sci., 18 (1988) 13-18.
  • M. Erat, M Ciftci, In vitro effects of some antibiotics on glutathione reductase from sheep liver, J. Enzym Inhib. Med. Chem., 18 (2003) 545-550.
  • S.O. Kayaalp, Rasyonal Tedavi Yönünden Tıbbi Farmakoloji, Hacettepe-Taş pressing, Ankara, Türkiye, 1998.
  • G.L. Ellman, K.D. Courtney, V. Jr. Andres, R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol., 7 (1961) 88-95. Cusinato, T.M.A. Franco, M.R. Bogo, C.D. Bonan, In vitro effects of antiepileptic drugs on acetylcholinesterase and ectonucleotidase activities in zebraŞsh (Danio rerio) brain, Toxicol. Vitr., 24 (2010) 1279–1284.
  • I. Shaked, G. Zimmermann, H. Soreq, Stress-induced alternative splicing modulations in brain and periphery, Ann. New York Aca. Sci., 1148 (2008) 269– 281.
  • E. Milkani, C.R. Lambert, W.G. McGimpsey, Direct detection of acetylcholinesterase inhibitor binding with an enzyme-based surface plasmon resonance sensor, Anal. Biochem., 408 (2011) 212–219.
  • M. Stoytcheva, R. Zlatev, Bioelectrocatalytical studies of the effect of some pharmaceuticals on the acetylcholinesterase activity, Electroanalys., 8 (1996) 676-679.
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi
Sayıdaki Diğer Makaleler

Yüksek Ekonomik Değeri Olan Bazi Su Ürünlerinde Listeria monocytogenes Kontaminasyonunun Giderilmesi için Nisin ve Gama Işınlama Kombinasyonlarının Etkisi

Ahmet KOLUMAN, Abdullah DİKİCİ

İn Vitro Olarak Gama Radyasyon ile İndüklenen P53, HIPK-2 ve EIF2S1 Genlerinin Ekspresyon Değişikliklerinin Araştırılması

Sibel ÜNLÜ, Emel SAĞLAR

Yeni Kitosan-Glioksal Küre Destekli Pd(II) Katalizörü: Sentezi, Karakterizasyonu ve Suzuki Kenetlenme Reaksiyonlarindaki Uygulaması

Talat Baran

Modifiye Edilmiş Miyokardiyal Enfarktüs Rat Modelinden Sonra Hasarlı Kalp Fonksiyonlarının Kemik İliği Mezenşimal Kök Hücreler İle İyileştirilmesi

Esin AKBAY, Handan SEVİM, Özer Aylin GÜRPINAR, Serdar GÜNAYDIN, Mehmet Ali ONUR

Bazı Klor İçeren Benzimidazollerin Sentezi ve Antioksidan, Ksantin Oksidaz ve Üreaz İnhibitör Aktivitelerinin İncelenmesi

Nimet BALTAŞ, Fatih YILMAZ, Emre MENTEŞE

Oncorhynchus mykiss’in Yüzey Mukus Tabakasından Lipaz Üretici Bakterilerin İzolasyonu, Tanımlanması ve Enzim Karakterizasyonu

Serpil UĞRAŞ

Klorofenollerin Biyobozunur Organik Asitlere Dönüşümü İçin Organojel-Silika Kompozit Yaban Turpu Peroksidaz İmmobilizasyonu

Rabel SOOMRO, Najma MEMON, M. Iqbal BHANGER, Adil DENİZLİ

Dutların Fiziksel ve Kimyasal Özellikleri Üzerine Genetopin Etkisi

Fatma HEPSAĞ, Özgür GÖLGE, İbrahim HAYOĞLU

Yeni Kitosan-Glioksal Küre Destekli Pd II Katalizörü: Sentezi, Karakterizasyonu ve Suzuki Kenetlenme Reaksiyonlarindaki Uygulaması

Talat BARAN

Nano-Hidroksiapatitin Boyut ve Özelliklerine Silika ve Doğal Polimerin Etkisi

Fariba NAJAFİZADEH, Mir Abdullah Seyed SADJADİ, Seyed Jemiladine FATEAMİ, Mahmood Karimi MOBARAKEH, Reza Malekpour AFSHAR