Hyaluronik Asit Ekleyerek Kitosan/PEO Döküm Filmlerinin Morfolojisinin ve Biyouyumluluğunun İyileştirilmesi

Biyopolimer esaslı harmanlar, polietilen oksit (PEO) ile daha dayanıklı ve biyouyumlu yüzeyler elde etmek için çeşitli oranlarda dökme film formunda kullanılabilir. Kitosan ve hiyaluronik asit (HA), film üretimi için en çok kullanılan biyouyumlu biyopolimerlerdir. Öte yandan, sentetik bir polimer olarak, PEO çeşitli molekül ağırlığında yüzeylerin dayanıklılığını arttırmak için çoğunlukla kullanılmaktadır. Bu çalışma, literatürde bildirilen Kitosan/PEO film yüzeylerinden farklı olarak, kitosan ve PEO biyopolimer karışımları üzerine, HA’nın etkisini belirlemek amacıyla yapılmıştır. FTIR sonuçları, farklı oranlarda dört filmin, yüzeyi boyunca kitosana ait herhangi bir polikatyonik amin grubunun dökümden sonra sunmamıştır. Yüzey morfolojisi SEM, EDS ve polarize mikroskop analizleri ile belirlenmiştir. Filmlerde artan PEO miktarı ile birlikte iyi yönlendirilmiş küresel kristalleşme yüzey morfolojisi gözlenmiştir. Şaşırtıcı olarak, HA’nın sağlıklı fare fibroblast hücre hattı, L929 (ATCC CCL-1) kullanılarak test edilen PEO bakımından zengin yüzeylerin biyouyumluluk özelliğini geliştirdiği kanıtlanmıştır.

Improved Morphology and Biocompatibility of Chitosan/PEO Casting Films Adding Hyaluronic Acid

Biopolymer-based blends can be used within the form of cast film in various proportions with polyethylene oxide (PEO) in order to obtain more durable and biocompatible surfaces. Chitosan and hyaluronic acid (HA) are the most used biocompatible biopolymers for the production of films. On the other hand, as a synthetic polymer, PEO has been mostly used to improve durability of the surfaces by using in various molecular weights. This study was carried out to determine the effect of HA on the chitosan and PEO biopolymer blends different from reported Chitosan/PEO film surfaces in the literature. FTIR studies presented no any polycationic amine groups belong to chitosan through the surface of four films in different compositions after casting. Surface morphology were determined by SEM, EDS and polarized microscopy analyses. Surface morphology was observed as well-oriented spherulitic crystallization by the increasing amount of PEO in the films. Astonishingly, it was proven that HA improved the biocompatibility feature of PEO-rich surfaces which were tested by using healthy mouse fibroblast cell lines, L929 (ATCC CCL-1).

___

  • J. Li, S. Zivanovic, P. Davidson, and K. Kit, Production and characterization of thick, thin and ultra-thin chitosan/PEO films, Carbohyd. Polym., 83 (2011) 375- 382.
  • W. Zhao, L. Yu, X. Zhong, Y. Zhang, and J. Sun, The compatibility and morphology of chitosan-poly (ethylene oxide) blends, J. Macromol. Sci. B., 34 (1995) 231-237.
  • S. Bonardd, M. Schmidt, M. Saavedra-Torres, A. Leiva, D. Radic, and C. Saldías, Thermal and morphological behavior of chitosan/PEO blends containing gold nanoparticles. Experimental and theoretical studies, Carbohyd. Polym., 144 (2016) 315-329.
  • S. Zivanovic, J. Li, P.M. Davidson, and K. Kit, Physical, mechanical, and antibacterial properties of chitosan/ PEO blend films, Biomacromolecules, 8 (2007) 1505- 1510.
  • V. Guarino, M. Marrese, and L. Ambrosio, Chemical and physical properties of polymers for biomedical use, in advanced polymers in medicine. (2015), Springer. 67-90.
  • T. Doussineau, M. Kerleroux, X. Dagany, C. Clavier, M. Barbaire, J. Maurelli, R. Antoine, and P. Dugourd, Charging megadalton poly(ethylene oxide)s by electrospray ionization. A charge detection mass spectrometry study, Rapid. Commun. Mass. Sp., 25 (2011) 617-623.
  • H. Wang, J. K. Keum, A. Hiltner, E. Baer, B. Freeman, A. Rozanski, and A. Galeski, Confined crystallization of polyethylene oxide in nanolayer assemblies, Science, 323 (2009) 757-760.
  • M. S. Bostan, E. C. Mutlu, H. Kazak, S. S. Keskin, E. T. Oner, and M. S. Eroglu, Comprehensive characterization of chitosan/PEO/levan ternary blend films, Carbohyd. Polym., 102 (2014) 993-1000.
  • G. Kogan, L. Šoltés, R. Stern, and P. Gemeiner, Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications, Biotechnol. Lett., 29 (2007) 17-25.
  • J. D. Đoki , A. Kojovi , D. Stojanovi , A. Marinkovi , G. Vukovi , R. Aleksi , and P. S. Uskokovi , Processing and nanomechanical properties of chitosan/ polyethylene oxide blend films, J. Serb. Chem. Soc., 77 (2012) 1723-1733.
  • N. E. Muzzio, M. A. Pasquale, E. Diamanti, D. Gregurec, M. M. Moro, O. Azzaroni, and S. E. Moya, Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria, Mater. Sci. Eng. C, 80 (2017) 677-687.
  • G. Lalevée, G. Sudre, A. Montembault, J. Meadows, S. Malaise, A. Crépet, L. David, and T. Delair, Polyelectrolyte complexes via desalting mixtures of hyaluronic acid and chitosan—Physicochemical study and structural analysis, Carbohyd. Polym., 154 (2016) 86-95.
  • J.P. Berezney and O.A. Saleh, Electrostatic effects on the conformation and elasticity of hyaluronic acid, a moderately flexible polyelectrolyte, Macromolecules, 50 (2017) 1085-1089.
  • K. Lewandowska, A. Sionkowska, and S. Grabska, Chitosan blends containing hyaluronic acid and collagen. Compatibility behaviour, J. Mol. Liq., 212 (2015) 879-884.
  • K. Lewandowska, A. Sionkowska, S. Grabska, and B. Kaczmarek, Surface and thermal properties of collagen/hyaluronic acid blends containing chitosan, Int. J. Biol. Macromol., 92 (2016) 371-376.
  • T. Noguchi, B. Roy, D. Yoshihara, J. Sakamoto, T. Yamamoto, and S. Shinkai, Emergent molecular recognition through self assembly: unexpected selectivity for hyaluronic acid among glycosaminoglycans, Angewandte Chemie International Edition, 55 (2016) 5708-5712.
  • 11. M.N. Collins and C. Birkinshaw, Hyaluronic acid based scaffolds for tissue engineering—A review, Carbohyd. Polym., 92 (2013) 1262-1279.
  • N.V. Rao, H.Y. Yoon, H.S. Han, H. Ko, S. Son, M. Lee, H. Lee, D.G. Jo, Y.M. Kang, and J.H. Park, Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment, Expert. Opin. Drug. Del., 13 (2016) 239-252.
  • L. Mayol, D. De Stefano, F. De Falco, R. Carnuccio, M. C. Maiuri, and G. De Rosa, Effect of hyaluronic acid on the thermogelation and biocompatibility of its blends with methyl cellulose, Carbohyd. Polym., 112 (2014) 480-485.
  • M.S. Bostan, M. Senol, T. Cig, I. Peker, A. C. Goren, T. Ozturk, and M. S. Eroglu, Controlled release of 5-aminosalicylicacid from chitosan based pH and temperature sensitive hydrogels, Int. J. Biol. Macromol., 52 (2013) 177-183.
  • I.A. Sogias, A.C. Williams, and V.V. Khutoryanskiy, Why is chitosan mucoadhesive?, Biomacromolecules, 9 (2008) 1837-1842.
  • E. Guibal, T. Vincent, and R. Navarro, Metal ion biosorption on chitosan for the synthesis of advanced materials, J. Mater. Sci., 49 (2014) 5505-5518.
  • R.C.F. Cheung, T.B. Ng, J.H. Wong, and W.Y. Chan, Chitosan: an update on potential biomedical and pharmaceutical applications, Mar. Drugs., 13 (2015) 5156-5186.
  • A. Varma, S. Deshpande, and J. Kennedy, Metal complexation by chitosan and its derivatives: a review, Carbohyd. Polym., 55 (2004) 77-93.
  • F. Al Sagheer, M. Al-Sughayer, S. Muslim, and M. Z. Elsabee, Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf, Carbohyd. Polym., 77 (2009) 410-419.
  • M.S. Eroglu, E. Toksoy Oner, E. Cansever Mutlu, and M. Sennaroglu Bostan, Sugar based biopolymers in nanomedicine; new emerging era for cancer imaging and therapy, Curr. Top. Med. Chem., 17 (2017) 1507- 1520.
  • M. Syakir, N. Nurin, N. Zafirah, M. A. Kassim, and H. A. Khalil, Nanoclay reinforced on biodegradable polymer composites: potential as a soil stabilizer, in nanoclay reinforced polymer composites, (2016), Springer. 329-356.
  • P. Fajardo, J. Martins, C. Fuciños, L. Pastrana, J. Teixeira, and A. Vicente, Evaluation of a chitosanbased edible film as carrier of natamycin to improve the storability of Saloio cheese, J. Food. Eng., 101 (2010) 349-356.