PSMD4 Geninin Ekspresyonu ve Biyoinformatik Analizi

26S proteazom non ATPaz subunit 4 (PSMD4) kromozom 1’in q kolunun 21.3 bölgesinde lokalize olmuştur ve 41 Kda moleküler ağırlığında protein kodlamaktadır. PSMD4, 26S proteazomun yapı birimi olan 19S düzenleyici yapı biriminde görev yapmaktadır. Proteozomun ana görevi ihtiyaç duyulmayan işlevini yitirmiş ya da zarar görmüş proteinlerin yıkımıdır. Literatürde çok işlevli protein olan PSMD4 ve onun regülasyonu hakkındaki bilgiler oldukça sınırlıdır. Bu çalışmada; PSMD4’ün mRNA ve protein seviyesindeki ekspresyonu çok sayıda kanser hücre hattında (prostat, meme, kolon, servik, hepotoma, kemik ve pankreas kanseri) ve bir normal hücrede (Göbek kordonu epitel hücresi) incelenmiştir. PSMD4 mRNA ve protein seviyesindeki ekspresyonu PC-3 ve HUVEC hücre hatlarında en yüksek seviyede elde edilmiştir. Ayrıca PSMD4 proteinin insan, fare ve tavşan gibi farklı türlerdeki biyoinformatik analizleri 3 türde ilk 250 amino asit benzer olduğunu ve korunduğu göstermiştir.

The Bioinformatic and Expression Analysis of PSMD4 Gene

26S proteasome non-ATPase subunit 4 (PSMD4) that has a molecular weight of 41 kDa is included on chromosome 1 (1q21.3). PSMD4 protein is a subunit of the 19S regulatory region in the 26S proteasome. The proteasome breaks down proteins that are not needed or non-functional in the cell. We have limited data about the regulation of this gene in the literature. In our research, changes in the mRNA and protein levels of the PSMD4 gene were investigated in different cancer cell lines (prostate, breast, colon, cervix, hepatoma, osteosarcoma and pancreas) and a normal cell (human vein endothelial cell). The highest expression of PSMD4 gene was seen in HUVEC and PC-3 cells. Bioinformatic analysis was also performed on PSMD4 protein for different species namely human, mouse and rat. Our Bioinformatic analyses showed that first 250 nucleotides are much conserved in all three species.

___

  • R.K. Singh, S. Zerath, O. Kleifeld, M. Scheffner, M.H. Glickman,  D. Fushman, Recognition and Cleavage of Related to Ubiquitin 1 (Rub1) and Rub1-Ubiquitin Chains by Components of the Ubiquitin-Proteasome System, Mol. Cell. Proteomics, 11 (2012) 1595–1611.
  • M. Elangovan, C. Oh, L. Sukumaran, C. Wójcik, Y.J. Yoo, Functional differences between two major ubiquitin receptors in the proteasome; S5a and hRpn13, Biochem. Biophy. Res. Comm., 396 (2010) 425–428.
  • A. Sparks, S. Dayal, J. Das, P. Robertson, S. Menendez, MK. Saville, The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a. Oncogene, (2013) 1–12.
  • C. Wang, H. Fan, J. Zhou, M. Lu, J. Sun, Y. Song, H. Le, L. Jiang, B. Wang, Jiao, S5a binds to death receptor-6 to induce THP-1 monocytes to differentiate through the activation of the NF-kB pathway, J. Cell Sci., 127 (2014) 3257–3268.
  • G.P. Tuszynski, V.L. Rothman, M. Papale, B.K. Hamilton, J. Eyal, Identification and characterization of a tumor cell receptor for CSVTCG. a thrombospondin adhesive domain, J. Cell. Biol., 120 (1993) 513–521.
  • Y. Uyanıkgil, C. Sümer Turanlıgil, Ubikitin-proteozom yolağının karsinojenezdeki rolü. ARŞİV, 19 (2010) 36.
  • J. Wang, M.A. Maldonado, The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases, Cell. Mol. Immunol., 34 (2006) 255–261.
  • E.Tokay and F. Köçkar, ‘In Silico and Expression analysis of URG-4/URGCP Gene in Different Cancer Cells, J.Appl. Biol. Sci., 2 (2015) 13-18.
  • J.E. Nelson, A. Loukissa, C. Altschuller-Felberg, J.J. Monaco, J.T. Fallon, C. Cardozo, Up-regulation of the proteasome subunit LMP7 in tissues of endotoxemic rats. J. Laborat. Clin. Med., 135 (2000) 324–331.
  • N. Benaroudj, P. Zwickl, E. Seemuller, W. Baumeister, A.L. Goldberg, ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation, Molecul. Cell, 11 (2003) 69–78.
  • J.D. Etlinger, A.L. Goldberg, A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes, PNAS, 74 (1977) 54–58.
  • J. Adams, The proteasome: structure, function and role in the cell, Cancer Treat. Rev., 1 (2003) 3-9.
  • M. Alper and F. Köçkar, Induction of Human ADAMTS-2 Gene Expression by IL-1α is Mediated by a Multiple Crosstalk of MEK/JNK and PI3K Pathways in Osteoblast like Cells, Gene, 573 (2015) 321-327.
  • S. Türkoğlu, F. Köçkar, SP1 and USF differentially regulate ADAMTS1 gene expression under normoxic and hypoxic conditions in hepatoma cells, Gene, 575 1 (2016) 48-57.
  • H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, S.L. Zipursky, J. Darnell, Molecular cell biology, (2004) 66–72.
  • S.M. Pulukuri, C.S. Gondi, S.S. Lakka, A. Jutla, N. Estes, M. Gujrati, J.S. Rao, RNA interference -directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo, J. Biol. Chem., 280 (2005) 36529-36540.
  • A. Arlt, I. Bauer, C. Schafmayer, J. Tepel, S.S. Müerköster, M. Brosch, C. Röder, H. Kalthoff, J. Hampe, M.P. Moyer, U.R. Fölsch, H. Schafer, Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2), Oncogene, 28 (2009) 3983–3996.