Evaluating the Reactivity Superiority of Two Different Single-Walled Carbon Nanotube Anions Using An Anhydride Electrophile

Reductive chemistries have widely been used to functionalize single-walled carbon nanotubes (SWCNTs). However, the reactivity of negatively charged SWCNTs (NC-SWCNTs), prepared by different reductive chemistries, to the same electrophilic reagent has not been evaluated. Here in, the first example of the reactivity comparison of two different NC-SWCNTs towards 3-nitrophthalic anhydride is presented, and two novel functionalized SWCNTs are synthesized and characterized. The NC-SWCNTs, that are denoted as [(nBu―SWCNTn)-•Lin+] and [SWCNTn-•Lin+], are prepared via n-butyl lithium and lithium naphthalenide addition, respectively, and are reacted by 3-nitrophthalic anhydride under dry conditions. The resulting functionalized SWCNTs are characterized by Raman, UV-vis-NIR, TGA-MS, XPS, and TEM. The reactivity of [(nBu―SWCNTn)-•Lin+] towards electrophilic 3-nitrophthalic anhydride is found to be higher than [SWCNTn-•Lin+]. This is probably due to the high nucleophilic character of [(nBu―SWCNTn)-•Lin+] which bears lone pair electrons and electron-donating butyl groups

___

  • M.K. Bayazit, L.S. Clarke, K.S. Coleman, N. Clarke, Pyridinefunctionalized single-walled carbon nanotubes as gelators for poly(acrylic acid) hydrogels, J. Am. Chem. Soc., 132 (2010) 15814-15819.
  • 2. M.K. Bayazit, K.S. Coleman, Fluorescent single-walled carbon nanotubes following the 1,3-dipolar cycloaddition of pyridinium ylides, J. Am. Chem. Soc., 131 (2009) 10670- 10676.
  • 3. S.A. Hodge, M.K. Bayazit, K.S. Coleman, M.S.P. Shaffer, Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity, Chem. Soc. Rev., 41 (2012) 4409-4429.
  • 4. M.K. Bayazit, A. Suri, K.S. Coleman, Formylation of singlewalled carbon nanotubes, Carbon, 48 (2010) 3412-3419.
  • 5. B. Gebhardt, Z. Syrgiannis, C. Backes, R. Graupner, F. Hauke, A. Hirsch, Carbon Nanotube sidewall functionalization with carbonyl compounds-modified birch conditions vs the organometallic reduction approach, J. Am. Chem. Soc., 133 (2011) 7985-7995.
  • 6. M.K. Bayazit, K.S. Coleman, Ester-functionalized singlewalled carbon nanotubes via addition of haloformates, J. Material. Sci., 49 (2014) 5190-5198.
  • 7. A.J. Clancy, J. Melbourne, M.S.P. Shaffer, A one-step route to solubilised, purified or functionalised single-walled carbon nanotubes, J. Mater. Chem. A, 3 (2015) 16708-16715.
  • 8. M. De Marco, F. Markoulidis, R. Menzel, S.M. Bawaked, M. Mokhtar, S.A. Al-Thabaiti, S.N. Basahel, M.S.P. Shaffer, Crosslinked single-walled carbon nanotube aerogel electrodes via reductive coupling chemistry, J. Mater. Chem. A, 4 (2016) 5385-5389. Figure 7. TEM images of (a) [nBu-SWCNTs-NBA] (2) and (b) [SWCNTs-NBA] (3). M.K. Bayazit / Hacettepe J. Biol. & C 114 hem., 2019, 47 (1), 107–114
  • 9. G. Viswanathan, N. Chakrapani, H.C. Yang, B.Q. Wei, H.S. Chung, K.W. Cho, C.Y. Ryu, P.M. Ajayan, Single-step in situ synthesis of polymer-grafted single-wall nanotube composites, J. Am. Chem. Soc., 125 (2003) 9258-9259.
  • 10. R. Blake, Y.K. Gun’ko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, W.J. Blau, A generic organometallic approach toward ultra-strong carbon nanotube polymer composites, J. Am. Chem. Soc., 126 (2004) 10226-10227.
  • 11. S. Chen, W. Shen, G. Wu, D. Chen, M. Jiang, A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups, Chem. Phys. Lett., 402 (2005) 312-317.
  • 12. S. Pekker, J.P. Salvetat, E. Jakab, J.M. Bonard, L. Forró, Hydrogenation of carbon nanotubes and graphite in liquid ammonia, J. Phys. Chem. B, 105 (2001) 7938-7943.
  • 13. A. Pénicaud, P. Poulin, A. Derré, E. Anglaret, P. Petit, Spontaneous dissolution of a single-wall carbon nanotube salt, J. Am. Chem. Soc., 127 (2005) 8-9.
  • 14. O. Roubeau, A. Lucas, A. Pénicaud, A. Derré, Covalent functionalization of carbon nanotubes through organometallic reduction and electrophilic attack, J. Nanosci. Nanotechnol., 7 (2007) 3509-3513.
  • 15. M.K. Bayazit, S.A. Hodge, A.J. Clancy, R. Menzel, S. Chen, M.S.P. Shaffer, Carbon nanotube anions for the preparation of gold nanoparticle–nanocarbon hybrids, Chem. Comm., 52 (2016) 1934-1937.
  • 16. A.J. Clancy, M.K. Bayazit, S.A. Hodge, N.T. Skipper, C.A. Howard, M.S.P. Shaffer, Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes, Chem. Rev., 118 (2018) 7363-7408.
  • 17. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep., 409 (2005) 47-99.
  • 18. M.S. Strano, Probing chiral selective reactions using a revised kataura plot for the interpretation of single-walled carbon nanotube spectroscopy, J. Am. Chem. Soc., 125 (2003) 16148-16153.
  • 19. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy, Nano Lett., 10 (2010) 751-758.
  • 20. J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Solution properties of single-walled carbon nanotubes, Science, 282 (1998) 95-98.
  • 21. M.E. Itkis, S. Niyogi, M.E. Meng, M.A. Hamon, H. Hu, R.C. Haddon, Spectroscopic study of the fermi level electronic structure of single-walled carbon nanotubes, Nano Lett., 2 (2002) 155-159.
  • 22. D. Wunderlich, F. Hauke, A. Hirsch, Preferred functionalization of metallic and small-diameter singlewalled carbon nanotubes by nucleophilic addition of organolithium and -magnesium compounds followed by reoxidation, Chem. Eur. J., 14 (2008) 1607-1614.