Farklı inverter topolojili elektrikli yayların harmonik azaltma performanslarının değerlendirilmesi

Elektrikli yay (ES), güç sistemlerinde işlevsellik açısından mekanik yaylara eşdeğer bir sistem gerçekleştirme fikrinden esinlenilerek geliştirilmiş yeni bir teknolojidir. Elektrikli yaylar bir DC gerilim kaynağından, bir inverterden ve şebeke tarafında bir LC filtreden oluşur. Güç sistemlerinde voltaj regülasyonu, reaktif güç kompanzasyonu, talep yönetimi ve enerji depolama gibi birçok işlevi yerine getirmek için etkin bir şekilde kullanılabilir. Öte yandan ES yapısındaki yarı iletken elemanlar nedeniyle gerilim ve akım dalga şekillerinde bozulmalara neden olur. Ancak söz konusu bozulmaların önüne geçebilmek için literatürde çeşitli kontrol yaklaşımları önerilmiştir. Bu çalışmada, uygulamalarda sıklıkla tercih edilen evirici topolojileri ile Yarım-Köprü, Tam- Köprü ve Nötr Nokta Kenetlemeli Çok-Seviyeli İnverter (NPC-MLI) olmak üzere üç farklı ES modellenmiştir. MATLAB/Simulink® programında gerçekleştirilen simülasyonlardan elde edilen sonuçlarla, farklı evirici topolojilerine sahip elektrik yaylarının şebeke üzerindeki bozucu etkileri ve harmonik gidermedeki performansları incelenmiştir.

Assessment of harmonic mitigation performance of electric springs with different inverter topologies

Electric spring (ES) is a new technology inspired by the idea of realization a system that is equivalent to mechanical springs in terms of functionality within power systems. Electric springs are comprised from a DC voltage source, an inverter and an LC filter at the grid side. It can be used effectively in power systems to perform many functions such as voltage regulation, reactive power compensation, demand management and energy storage. On the other hand, due to the semiconductor elements in ES structure, it causes distortion on voltage and current waveforms. However, various control approaches have been proposed in the literature in order to prevent the aforementioned distortions. In this study, three different ESs has been modeled with the inverter topologies chosen from the frequently preferred once used in applications, namely Half-Bridge, Full-Bridge, and Neutral Point Clamped Multi-Level Inverter (NPC-MLI). The disruptive effects of electric springs with different inverter topologies on the grid and their performance in harmonic elimination have been examined through the results obtained from simulations realized in MATLAB/Simulink®.

___

  • Chaudhuri, N. R., Lee, C. K., Chaudhuri, B., & Hui, S. Y. R. (2014). Dynamic modeling of electric springs. IEEE Transactions on Smart Grid, 5(5), 2450–2458. https://doi.org/10.1109/TSG.2014.2319858
  • Daratha, N., Das, B., & Sharma, J. (2014). Coordination between OLTC and SVC for voltage regulation in unbalanced distribution system distributed generation. IEEE Transactions on Power Systems, 29(1), 289–299. https://doi.org/10.1109/TPWRS.2013.2280022
  • Duman, T. (2021). Single phase 5-level NPC multilevel inverter using level-shifted sinusoidal PWM. ICA-EAST 2021, 130–137. https://ica-east.erzurum.edu.tr/Home/Proceedings
  • Gajbhiye, K., Dahiwale, P., Bharti, S., Pawar, R., Gawande, S. P., & Kadwane, S. G. (2018). Five-level NPC/H-bridge MLI based electric spring for harmonic reduction and voltage regulation. 2017 International Conference on Smart Grids, Power and Advanced Control Engineering, ICSPACE 2017. https://doi.org/10.1109/ICSPACE.2017.8343429
  • Hui, S. Y., Lee, C. K., & Wu, F. F. (2012). Electric springs - A new smart grid technology. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2012.2200701
  • Kanjiya, P., & Khadkikar, V. (2013). Enhancing power quality and stability of future smart grid with intermittent renewable energy sources using electric springs. Proceedings of 2013 International Conference on Renewable Energy Research and Applications, ICRERA 2013. https://doi.org/10.1109/ICRERA.2013.6749882
  • Kaymanesh, A., Babaie, M., Chandra, A., & Al-Haddad, K. (2021). PEC inverter for intelligent electric spring applications using ANN-based controller. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 1. https://doi.org/10.1109/JESTIE.2021.3095018
  • Lee, C.-K., Liu, H., Tan, S.-C., Chaudhuri, B., & Hui, S.-Y. R. (2021). Electric spring and smart load: Technology, system-level impact, and opportunities. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(6), 6524–6544. https://doi.org/10.1109/JESTPE.2020.3004164
  • Liang, L., Hou, Y., & Hill, D. J. (2020). An interconnected microgrids-based transactive energy system with multiple electric springs. IEEE Transactions on Smart Grid, 11(1), 184–193. https://doi.org/10.1109/TSG.2019.2919758
  • Muttaqi, K. M., Le, A. D. T., Negnevitsky, M., & Ledwich, G. (2015). A coordinated voltage control approach for coordination of OLTC, voltage regulator, and DG to regulate voltage in a distribution feeder. IEEE Transactions on Industry Applications, 51(2), 1239–1248. https://doi.org/10.1109/TIA.2014.2354738
  • Palensky, P., & Dietrich, D. (2011). Demand side management: Demand response, intelligent energy systems, and smart loads. IEEE Transactions on Industrial Informatics, 7(3), 381–388. https://doi.org/10.1109/TII.2011.2158841
  • Pawar, R., Gawande, S. P., Kadwane, S. G., Waghmare, M. A., & Nagpure, R. N. (2017). Five-level diode clamped multilevel inverter (DCMLI) based electric spring for smart grid applications. Energy Procedia. https://doi.org/10.1016/j.egypro.2017.05.204
  • Rao, P., Crow, M. L., & Yang, Z. (2000). STATCOM control for power system voltage control applications. IEEE Transactions on Power Delivery, 15(4), 1311–1317. https://doi.org/10.1109/61.891520
  • Shademan, M., Jalilian, A., & Savaghebi, M. (2021). Improved control method for voltage regulation and harmonic mitigation using electric spring. Sustainability, 13(8), 4523. https://doi.org/10.3390/su13084523
  • Shuo, Y., Tan, S. C., Lee, C. K., & Hui, S. Y. R. (2014). Electric spring for power quality improvement. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC. https://doi.org/10.1109/APEC.2014.6803602
  • Sundar, N. S., Philip, L., Tapasvi, P., Akash, M., & Hiraj, D. (2017). Multilevel inverter based electric spring for voltage regulation and active reactive power control. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016. https://doi.org/10.1109/ICPEICES.2016.7853410
  • Tapia-Tinoco, G., Garcia-Perez, A., Granados-Lieberman, D., Camarena-Martinez, D., & Valtierra-Rodriguez, M. (2020). Hardware structures, control strategies, and applications of electric springs: A state-of-the art review. In IET Generation, Transmission and Distribution. https://doi.org/10.1049/iet-gtd.2019.1813
  • Wang, M.-H., Yang, T.-B., Tan, S.-C., & Hui, S. Y. (2019). Hybrid electric springs for grid-tied power control and storage reduction in AC microgrids. IEEE Transactions on Power Electronics, 34(4), 3214–3225. https://doi.org/10.1109/TPEL.2018.2854569
  • Wang, M., He, Y., Xu, X., Dong, Z., & Lei, Y. (2021). A review of AC and DC electric springs. IEEE Access, 9, 14398–14408. https://doi.org/10.1109/ACCESS.2021.3051340
  • Wang, Q., Cheng, M., Jiang, Y., Zuo, W., & Buja, G. (2018). A simple active and reactive power control for applications of single-phase electric springs. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2018.2793201
  • Wang, Q., Deng, F., Cheng, M., & Buja, G. (2018). The state of the art of topologies for electric springs. In Energies. https://doi.org/10.3390/en11071724
  • Yan, S., Tan, S.-C., Lee, C.-K., Chaudhuri, B., & Hui, S. Y. R. (2015). Electric springs for reducing power imbalance in three-phase power systems. IEEE Transactions on Power Electronics, 30(7), 3601–3609. https://doi.org/10.1109/TPEL.2014.2350001
  • Yan, S., Tan, S. C., Lee, C. K., Chaudhuri, B., & Hui, S. Y. R. (2017). Use of smart loads for power quality improvement. IEEE Journal of Emerging and Selected Topics in Power Electronics. https://doi.org/10.1109/JESTPE.2016.2637398
  • Yang, T., Liu, T., Chen, J., Yan, S., & Hui, S. Y. R. (2018). Dynamic modular modeling of smart loads associated with electric springs and control. IEEE Transactions on Power Electronics, 33(12), 10071–10085. https://doi.org/10.1109/TPEL.2018.2794516
  • Zheng, Y., Hill, D. J., Song, Y., Zhao, J., & Hui, S. Y. R. (2020). Optimal electric spring allocation for risk-limiting voltage regulation in distribution systems. IEEE Transactions on Power Systems, 35(1), 273–283. https://doi.org/10.1109/TPWRS.2019.2933240
Gümüşhane Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: GÜMÜŞHANE ÜNİVERSİTESİ