Yanıt Yüzey Yöntemi veGıda İşleme Uygulamaları

Gıda mühendisliğinde optimizasyon, proseslerde işlem verimi ve ürün kabulünün yüksek olması için kullanılan önemli bir araçtır. Yanıt yüzey yöntemi, optimizasyonu da içeren istatistiksel bir tekniktir. Prosesi etkileyen parametreler bağımsız değişkenler, yanıtlar ise bağımlı değişkenler olarak adlandırılmaktadır. Optimum bölge, yanıtların izohips eğrilerinin çizilerek üst üste yerleştirilmesi (superimposing) veya desirability (istenilen hedefe ulaşma) fonksiyonu veya lineer olmayan programlama yaklaşımları kullanılarak belirlenir. Yanıt yüzey yöntemi gıda işlemede; çeşitli ürünlerin osmotik dehidrasyon koşullarının optimizasyonu, optimum püskürtmeli kurutma ve akışkan yatak kurutma koşullarının belirlenmesi, çeşitli enzimlerin üretim koşullarının optimizasyonu, pastörizasyon, ekstrüzyon, fırında pişirme gibi proseslerin optimizasyonunda 2000 yılından itibaren yaygın olarak kullanılmaya başlanmıştır.

Response Surface Methodology and Food Processing Applications (Turkish with English Abstract)

Optimization is an essential tool in food engineering for the efficiency of the processing operations and high acceptability of the processes yield. The response surface methodology is a statistical technique including optimization. The parameters affecting the process are called as independent variables while the responses are designated as dependent variables. Optimum regions are derived by superimposition of the contour plots or using desirability function or non-linear programming approaches. Response surface methodology has been widely used in many food processing application such as optimization of osmotic dehydration conditions of various products, determination of optimum spray drying and fluid bed drying conditions, optimization of fermentation conditions for enzyme production, optimization of baking, pasteurization and extrusion process conditions etc. since the beginning of 2000’s.

___

  • 1. Banga JR, Balsa-Canto E, Moles CG, Alonso AA. 2003. Improving food processing using modern optimization methods. Trends Food Sci & Tech, 14: 131-144.
  • 2. Saguy I, Mishkin MA, Karel M. 1984. Optimization methods and available software, part1. CRC Critical RevFood Sci and Nutr, 20 (4): 275-299.
  • 3. Myers RH, Montgomery DC. 1995. Response Surface Methodology, Process and Product Optimization Using Designed Experiments. 2nd ed. John Wiley and Sons, New York, NY.
  • 4. Eren İ. 2004. Patateslerin osmotik dehidrasyonunun “response surface” metodu kullanılarak optimizasyonu. Ege Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, İzmir, Türkiye.
  • 5. Thompson, D. 1982, Response Surface Experimentation. J Food Process Preservation, 6: 155-188.
  • 6. Baş D, Boyacı İH. 2007. Modeling and optimization I: Usability of response surface methodology. J Food Eng, 78: 836-845.
  • 7. Neter J, Wasserman W, Kutner M. 1990. Applied Linear Regression Models. Richard D. Irwin Inc., Homewood, IL.
  • 8. Castillo ED. 2007. Process Optimization, a Statistical Approach. Springer Science + Business Media, LLC, New York, NY.
  • 9. Tunalı S, Batmaz I. 2000. Dealing with the least squares regression assumptions in simulation metamodeling. Computers and Industrial Eng, 38: 307–320.
  • 10. İkiz F, Püskülcü H, Eren Ş. 2000. İstatistiğe Giriş. Barış Yayınları, Fakülteler Kitabevi, 6. baskı, İzmir, Türkiye.
  • 11. Box GEP, Draper NR. 2007. Empirical Model Building and Response Surfaces. 2nd ed. John Wiley and Sons, New York, NY.
  • 12. Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM. 2004 Response Surface Methodology: A Retrospective and Literature Survey, J Quality Tech, 36:53-77.
  • 13. Khuri AI. Cornell JA. 1996. Response Surfaces: Designs and Analyses. 2nd edition, Marcel Dekker Inc., New York, 190p.
  • 14. Design Expert 2002. Version 6.0.4 by Stat-Ease, inc., MN, USA.
  • 15. Saklar S, Katnas S, Ungan S. 2001. Determination of optimum hazelnut roasting conditions. Intl Jl of Food Sci Tech, 36:271-281.
  • 16. Goksungur Y, Mantzouridou T, Roukas F, Kotzekidou P. 2004. Production of ß-Carotene from Beet Molasses by Blakeslea trispora in Stirred-Tank and Bubble Column Reactors. Appl Biochem Biotechnol, 112, (1): 37-54.
  • 17. Koç B. 2008. Püskürtmeli kurutma yöntemi ile yo- ğurt tozu üretim koşullarının optimizasyonu. Ege Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, İzmir, Türkiye.
  • 18. Ürküt Z, Dağbağlı S, Göksungur Y. 2007. Optimization of Pullulan Production Using Ca-AlginateImmobilized Aureobasidium pullulans by Response Surface Methodology. J Chem Technol Biotechnol, 82: 837-846.
  • 19. Eren İ, Kaymak-Ertekin, F. 2006. Optimization of osmotic dehydration of potato using response surface methodology. J Food Eng, 79: 344-352.
  • 20. Ceylan H, Kubilay Ş, Aktaş N, Şahiner N. 2008. An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM). Bioresource Tech, 99: 2025–2031.
  • 21. Kahyaoglu T, Kaya S. 2006. Determination of optimum processing conditions for hot-air roasting of hulled sesame seeds using response surface methodology. J Sci Food Agric, 86: 1452–1459.
  • 22. Güvenç A, Kapucu N, Kapucu H, Aydoğan Ö, Mehmetoğlu U. 2007. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodology. Enzyme and Microbial Techn, 40: 778–785.
  • 23. Altan A, McCarthy KL, Maskan M. 2008. Extrusion cooking of barley flour and process parameter optimization by using response surface methodology. J Sci Food Agric, 88:1648–1659.
  • 24. Demirekler P, Şumnu G, Sahin S. 2004. Optimization of bread baking in a halogen lamp–microwave combination oven by response surface methodology. Eur Food Res Tech, 219: 341–347.
  • 25. Sevimli KM, Şumnu G, Şahin S. 2005. Optimization of halogen lamp–microwave combination baking of cakes: a response surface methodology study. Eur Food Res Tech, 221:61–68.
  • 26. Öztop MH. Şahin S. Şumnu G. 2007. Optimization of microwave frying of osmotically dehydrated potato slices by using response surface methodology. Eur Food Res Tech, 224: 707–713.
  • 27. Özdemir M, Özen BF, Dock LL, Floros JD. 2008. Optimization of osmotic dehydration of diced green peppers by response surface methodology. Food Sci Techn, 41: 2044-2050.
  • 28. Aksay S. Mazza G. 2007. Optimization of protein recovery by foam separation using response surface methodology. J Food Eng, 79: 598–606.
  • 29. Koç AB, Heinemann PH, Ziegler GR. 2003. A process for increasing the free fat content of spray-dried whole milk powder. J Food Sci, 68 (1): 210-216.
  • 30. Boyacı İH, Williams PC, Köksel H. 2004. A rapid method for the estimation of damaged starch in wheat flours. J Cereal Sci, 39: 139–145.
  • 31. İbanoglu Ş, Ainsworth P. 2004. Application of response surface methodology for studying the viscosity changes during canning of tarhana, a cereal-based food. J Food Eng, 64: 273–275.
  • 32. Buzrul S, Çevik M, Alpas H. 2008. Comparison of response surface methodology and the proposed weibull model for inactivation of Listeria innocua by high hydrostatic pressure J Food Safety, 28: 142–156.
  • 33. Özer AE, Herken EN, Güzel S, Ainsworth P, İbanoğ- lu Ş. 2006. Effect of extrusion process on the antioxidant activity and total phenolics in a nutritious snack food. International Journal of Food Science and Technology, 41: 289–293.
  • 34. İyidoğan NF, Bayındırlı A. 2004. Effect of L-cysteine, kojic acid and 4-hexylresorcinol combination on inhibition of enzymatic browning in Amasya apple juice. J Food Eng, 62: 299–304.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR