UÇUCU YAĞ İÇEREN KİTOSAN BAZLI FİLMLERİN KARAKTERİZASYONU

Bu çalışmada, kekik yağı (TO, %2), üzüm çekirdeği yağı (GSO, %2) ve nar çekirdeği yağı (PSO, %2) eklenmiş kitosan (CH) filmler hazırlanmıştır. Film örnekleri, taramalı elektron mikroskobu (SEM) ile elde edilen görüntüler, su buharı geçirgenliği (WVP), mekanik testler ve optik özellikler ile karakterize edilmiştir. Antimikrobiyel aktivite ve filmlerin salım davranışı da incelenmiştir. SEM görüntüleri, CH-TO filmlerin, CH-GSO ve CH-PSO filmlerle karşılaştırıldığında daha homojen bir yapıya sahip olduğunu göstermektedir. CH filmlerin elastikiyeti yağ ilavesiyle geliştirilirken, filmlerin gerilme kuvvetinde önemli bir değişiklik gözlenmemiştir. CH filmlere esansiyel yağ ilavesi, filmlerin kalınlık, WVP ve su tutma kapasitesi değerlerinde önemli ölçüde azalışa neden olurken (p<0.05), filmlerin çözünürlük değerleri etkilenmemiştir. CH filmlere esansiyel yağ ilavesi, filmlerin optik özelliklerini etkilememiştir (p>0.05). En yüksek salım hızı, CH-TO film örneklerinde gözlenmiştir (p<0.05). Tüm film örnekleri, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes ve Pseudomonas aeruginosa’ya karşı antimikrobiyel aktivite göstermiştir. 

CHARACTERIZATION OF CHITOSAN BASED FILMS INCORPORATED WITH ESSENTIAL OILS

In this study, thyme oil (TO, 2%), grape seed oil (GSO, 2%), and pomegranate seed oil (PSO, 2%) added chitosan (CH) films were prepared. Film samples were characterized by scanning electron microscopy (SEM), water vapor permeability (WVP), tensile, and optical properties. The antimicrobial activity and release behavior of films were also studied. SEM images showed that CH-TO films were more homogeneous when compared to CH-GSO, and CH-PSO films. The elasticity of films was improved upon the addition of oils while there was no significant change in tensile strength. The incorporation of oils significantly reduced thickness, WVP and water-uptake values of films (p<0.05) while the solubility did not change significantly. The optical properties of films were not significantly affected by the addition of oils. The highest release rate was observed in CH-TO film samples (p<0.05). All film samples showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Pseudomonas aeruginosa. 

___

  • Abbasi, H., Rezaei, K., Emamdjomeh, Z., & Mousavi, S.M.E. (2008). Effect of various extraction conditions on the phenolic contents of pomegranate seed oil. Eur J Lipid Sci Tech 110:435-440.Abdollahi, M., Rezaei, M., Farzi, G. (2012). Improvement of active chitosan film properties with rosemary essential oil for food packaging. Int J Food Sci Tech 47:847–853.
  • Agostini, F., Bertussi, R.A., Agostini, G., Dos, A., Santos, A.C., Rossato, M., Vanderlinde, R. (2012). Supercritical extraction from vinification residues: fatty acids, α-tocopherol, and phenolic compounds in the oil seeds from different varieties of grape. Sci World J 2012:790486.ASTM (1995). American Society for Testing and Materials. Standard test methods for water vapor transmission of materials. Standard Designations: E96-95. Philadelphia, PA.
  • ASTM. (2001). American Society for Testing and Materials. Standard test method for tensile properties of thin plastic sheeting. Standard Designations: D882. Philadelphia, PA.
  • Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, I. (2008). Biological effects of essential oil sea review. Food Chem Toxicol 46:446-475.Bonilla, J., Vargas, M., Atares, A., Chiralt, A. (2014). Effect of chitosan essential oil films on the storage-keeping quality of pork meat products. Food Bioprocess Tech 7:2443-2450.
  • Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods-A review. Int J Food Microbiol 94:223–253.Çavdar, H.K., Yanık, D.K., Gök, U., Göğüş, F. (2017). Optimisation of Microwave Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation of Its Physicochemical and Bioactive Properties. Food Technol Biotech 55(1):86–94.
  • Choo, K., Ching, Y.C., Chuah, C.H., Julai, S., Liou, N.S. (2016). Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber, Materials 9(8):E644.
  • Coma, V., Martial Gros, A., Garreau, S., Copinet, A., Salin, F. Deschamps, A. (2002). Edible antimicrobial films based on chitosan matrix. J Food Sci 67:1162–1169.Commission Regulation, (EC). (2016). 2016/1416 of 24 August 2016 amending and correcting Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food.
  • Costantini, S., Rusolo, F., De Vito, V., Moccia, S., Picariello, G., Capone, F., Guerriero, E., Castello, G., Volpe, M. G. (2014). Potential anti-imflammatory effects of the hydrophilic fraction of pomegranate (Punica granatum L.) seed oil on breast cancer cell lines. Molecules 19(6):8644-60.
  • De Sousa, J.P., de Azeredo, G.A., de Araújo Torres, R., da Silva Vasconcelos, M.A., da Conceiçao, M.L., de Souza, E.L. (2012). Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables. Int J Food Microbiol 154:145-151.
  • Dutta, P.K., Dutta, J., Tripathi, V.S. (2004). Chitin and chitosan: Chemistry, properties and applications. J Sci Ind Res India 63:20-31.Friesen, K., Chang, C., Nickerson, M. (2015). Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: Mechanical, barrier and cross-linking properties. Food Chem 172:18-23.
  • Garavaglia, J., Markoski, M.M., Oliveira, A., Marcadenti, A. (2016). Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr Metab Insights 9:59–64.
  • Guarda, A., Rubilar, J.F., Miltz, J., Galotto, M.J. (2011). The antimicrobial activity of microencapsulated thymol and carvacrol. Int J Food Microbiol 146:144–150.Hosseini, M.H., Razavi, S.H., Mousavi, M.A. (2009). Antimicrobial, physical and mechanical properties of chitosan based films incorporated with thyme, clove and cinnamon essential oils. J Food Process Pres 33(6):727-743.
  • Jahed, E., Khaledabad, M.A., Almasi, H., Hasanzadeh, R. (2017a). Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements. Carbohyd Polym 164:325-338.
  • Jahed, E., Khaledabad, M.A., Bari, M.R., Almasi, H. (2017b). Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. React Funct Polym 117:70-80.
  • Kiralan, M., Gölükçü, M., Tokgöz, H. (2009). Oil and Conjugated Linolenic Acid Contents of Seeds from Important Pomegranate Cultivars (Punica granatum L.) Grown in Turkey. J Am Oil Chem Soc 86:985–990.
  • Kulisic, T., Radonic, A., Katalinic, V., Milos, M. (2004). Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem 85:633–640.Lee, D.S. (2005). Packaging containing natural antimicrobial or antioxidative agents. In: Innovations in Food Packaging, Han, J. (ed.), Elsevier Science & Technology Books, pp. 108–119.
  • Li, B., Kennedy, J.F., Jiang, Q.G., Xie, B.J. (2006). Quick dissolvable, edible and heat sealable blend films based on konjac glucomannan-gelatin. Food Res Int 39:544-549.
  • Lutterodt, H., Slavin, M., Whent, M., Turner, E., Yu, L.L. (2011). Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chem 128(2):391–399.
  • Martínez-Romero, D., Guillén, F., Valverde, J.M., Bailén, G., Zapata, P., Serrano, Castillo, S., Valero, D. (2007). Influence of carvacrol on survival of Botrytis cinerea inoculated in table grapes. Int J Food Microbiol 115:144–148.
  • Mayachiew, P., Devahastin, S. (2010). Effects of drying methods and conditions on release characteristics of edible chitosan films enriched with Indian gooseberry extract. Food Chem 118:594–601.
  • Ojagh S.M., Rezaei M., Razavi S.H., Hosseini S.M.H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem 1(1):161-166.
  • Pereda, M., Aranguren, M.I., Marcovich, N.E. (2010). Caseinate films modified with tung oil. Food Hydrocolloid 24:800–808.
  • Riberio-Santos, R., Ramos de Melo, N., Andrade, M., Azevedo, G., Machado, A. V., Carvalho-Costa, D., Sanches-Silva, A. (2017). Whey protein active films incorporated with a blend of essential oils: Characterization and effectiveness. Packag Technol Sci 31:27-40.
  • Rombaut, N., Savoire, R., Thomasset, B., Bélliard, T., Castello, J. Hecke, E., Lanoisellé, J.L. (2014). Grape seed oil extraction: interest of supercritical fluid extraction and gas-assisted mechanical extraction for enhancing polyphenol co-extraction in oil. CR Chim 17:284–292.
  • Safaei-Ghomi, J., Ebrahimabadi, A.H., Djafari-Bidgoli, Z., Batooli, H. (2009). GC/MS analysis and in vitro antioxidant activity of essential oil and methanol extracts of Thymus caramanicus Jalas and its main constituent carvacrol. Food Chem 115:1524–1528.
  • Seydim, A.C., Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int 39:639–644.
  • Shinagawa, F.B., Santana, F.C., Torres, L.R.O., Mancini-Filho, J. (2015). Grape seed oil: a potential functional food? Food Sci Technol (Campinas) 35(3):399–406.Siripatrawan, U., Harte, B.R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloid 24:770–775.
  • Soni, B., Schilling, M.W., Mahmoud, B. (2016). Transparent bionanocomposite films based on chitosan and tempo-oxidized cellulose nanofibers with enhanced mechanical and barrier properties, Carbohyd Polym 151:779–789.
  • Talon, E., Trifkovic, K.T., Vargas, M., Chiralt, A., Gonzalez-Martinez, C. (2017). Release of polyphenols from starch chitosan based films containing thyme extract. Carbohyd Polym 175:122-130.
  • Tongnuanchan, P., Benjakul, S., Prodpran, T. (2013). Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelation incorporated with root essential oils. J Food Eng 117(3):350-360.
  • Vargas, M., Albors, A., Chiralt, A. Gonzalez-Martınez, C. (2009). Characterization of chitosan-oleic acid composite films. Food Hydrocolloid 23:536–547. Weska, R., Moura, J., Batista, L., Rizzi, J., Pinto, L. (2007). Optimization of deacetylation in the production of chitosan from shrimp wastes: Use of response surface methodology. J Food Eng 80:749-753.
  • Xu, Y.X., Kimb, K.M., Hanna, M.A., Nag, D. (2005). Chitosan- starch composite film: Preparation and characterization. Ind Crop Prod 21:185-192.Xylia, P., Chrysargyris, A., Botsairs, G., Tzortzakis, N. (2017). Mint and pomegranate extracts/oils as antibacterial agents against Escherichia coli O157:57 and and Listeria monocytogenes on shredded carrots. J Food Safety 1-8.
  • Yasser, S. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int J Biol Macromol 99:746-753.Youn, D., No, H., Prinyawiwatkul, W. (2007). Physical characteristics of decolorized chitosan as affected by sun drying during chitosan preparation. Carbohyd Polym 69:707-712.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR