Türkiye'de Üretilen Ekşi Hamurlardan İzole Edilen Lactobacillus Suşlarının Antibakteriyel Aktivitelerinin Belirlenmesi

Bu çalışmada, Türkiye'nin 3 farklı şehrinden (Ankara, Bursa ve Trabzon) alınan ekşi hamur örneklerinden tanımlanan 150 adet Laktobacillussuşununbakteriyosin üretme yetenekleri ve bu suşların değişik indikatör bakterilere karşı antibakteriyel etkileri araştırılmıştır. Tanımlanan 150 adet Lactobacillus suşu içerisinden, 21 adetinin bakteriyosin üretme yeteneğinde olduğu belirlenmiştir. Bu suşların içerisinde antibakteriyel etki spektrumu en geniş olanlar; denenen tüm indikatör suşlara (Gram negatif bakteriler; E. coli CFAI, S. entericasubsp. entericaserovar. Typhimurium ve P. fluorescens de dahil) karşı etkinlik gösteren Lb. alimentariusLMO6, LMO7 ve Lb. plantarumLMO23, LMO25 ve LMO28 suşları olarak tanımlanmıştır. Bu suşlar, aynı zamanda, ekmeklerde rope etmeni olan B. subtilis ve B. licheniformis’e karşı da en yüksek inhibitör etki zonunu oluşturmuştur. Lb. collinoidesLMO33suşu, 14 farklı indikatör bakteriye karşı en düşük antibakteriyel etki spektrumuna sahip suş olarak belirlenmiştir.

Determination of the Antibacterial Activities of Lactobacillus Strains Isolated from Sourdoughs Produced In Turkey (Turkish with English Abstract)

In this study, the ability of 150 Lactobacillus strains identified from the samples of sourdough collected from three different cities in Turkey (Trabzon, Bursa, Ankara) to produce bacteriocin and antibacterial activities of these strains against different indicator bacteria have been investigated. 21 out of the 150 Lactobacillus strains were found as bacteriocin producers. It has been determined that Lb. alimentariusLMO6, LMO7, Lb. plantarumLMO23, LMO25 and LMO28, having antibacterial activity against all indicator bacteria (including Gram negative bacteria; E. coli CFAI, S. entericasubsp. entericaserovar. Typhimurium and P. fluorescens), showed the broadest antibacterial activity spectrum. These strains have also showed maximum inhibition zone against Bacillus subtilis and Bacillus licheniformiswhich cause rope in breads. Lb. collinoidesLMO33 showed the lowest antibacterial activity spectrum against 14 different indicator bacteria.

___

  • Anderson, D.G. and McKay. LL. 1983. A simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl. Env. Microbiol.. 46: 549-552.
  • Biet, F., Berjeaud, J.M., Worobo, Fl.W., Enatiempo, Y. and Fremaux 0.1998. Heterologous expression of the bacteriocin mesentericin Y 105 using the dedicated transport system and the general secretion pathway. Microbiology, 144: 2845-2854.
  • Bonade. A.. Murelli, F., Vescovo, M. and Scolari, G. 2001. Partial characterization of a bacteriocin produced by Lactobacr'll'us helveticus. Letters in Applied Microbiology, 33: 153-158.
  • Boris, 8., Jimenez—Diaz, H., Casc, J.L. and Barbes, C. 2001. Partial characterization of a bacteriocin produced by Lacrobacşlus delbrueckii subsp. lactic U0004, an intestinal isolate with probiotic potential. J. Appi. Microbiol., 91: 328-333.
  • Caplice, E. and Fitzgerald. G.F. 1999. Food termentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50: 131-149.
  • Chen, H. and Hoover. D.G. 2003. Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety, 2: 32-100.
  • De Angelis. M.. Gallo, G., Corbo, M.Fl., McSweeney, P.L.H., Facia, M., Giovine, M. and Gobbetti, M. 2003. Phytase activity in sourdough lactic acid bacteria: purification and characterizatin of phytase from Lacfobaciffus sanfranciscensis CBt. International Journal of Food Science, 87: 259-270.
  • De Vuyst. L. and Vandamme, E..]. 1994 . Bacteriocins of Lactic Acid Bacteria; Microbiology Genetics and Applications. Biackie Academic and Professional, 536 p., London.
  • De Vuyst, L.. Avonts. L.. Neysens, P., Hoste, B., Vancanneyt, M., Swings, J. and Callewaert, R. 2004. The lactobin A and amylovorin L471 encoding genes are identical and their distribution seems to be restricted to the species Lacrcbaciiius amyiovorus that is interesttor cereal fermentations. Int. J. Food Microbiol., 90: 93-106.
  • Dicks, L.M. T., Mellett, FD. and Hoffman, L. C. 2004. Use of bacteriocin-producing starters cultures of Lacrobacr'lius plantarum and Lactobacr‘ilus curvatus in production of ostrich meat salami. Meat Science, 66: 703-708.
  • Diep, DB. and Nes, l.F. 2002. Ftibosomally synthesized antibacterial peptides in gram positive bacteria. Current Drug Targets, 3: 107-122.
  • Elegado. F. B., Guerra, M.A.Fl.V., Mayaoan. H.A., Mendoza, H. A. and Lirazan, MB. 2004. Int. J. Food Microbiol., (in Press).
  • Franz, C.M.A.P., Du Tcit, A., Von Holy, U. and Holzapfel, W.H. 1997. Production of nisin-like bacteriocins by Lactccoccus iactis strains isolated from vegetables. J. Basic Microbiol. 37: 187-196.
  • Foschino, Ft., Arrigoni. C., Picozzi, C., Mora, D. and Gali, A. 2001. Phenotypic and genotypic aspects of Lactobacillus sanfranciscensis strains isolated from sourdough in Italy. Food Microbiology, 18: 277-285.
  • Gânzle, MG., Hertel, C., van der Vossen, J.M.B.M. and Hammes, W.P.1999. Effect of bacteriocin-producing lactobacilli on the survival of Esherichr‘a coli and Listeria in a dynamic model of the stomach and the small intestine. Int. J. Food Microbioi., 48: 21 -35.
  • Garneau, S., Martin, NJ. and Vederas J. C. 2002. Two-peptid bacteriocins produced by lactic acid bacteria. Biochimie, 84: 577-592.
  • Geis, A., Singh, J. and Teuber, M. 1983. Potential of Iactic streptococci to produce bacteriocin. Appi. Env. Microbiol., 45: 205— 211.
  • Gobbetti, M. 1998. The sourdough microflora: Interactions of lactic acid bacteria and yeasts. Food Science and Technology. 9: 267-274.
  • Helander, i. M., von Wright, A. and Manila-Sandholm, T. M. 1997. Potential of lactic acid bacteria and novel antimicrobials against Gram negative bacteria. Trends in Food Science and Technology, 8: 146-150.
  • Katina, K., Sauri, M., Alakomi. L. and Mattila—Sandholm, T. 2002. Potential of lactic acid bacteria to inhibit rope spoilage in wheat sourdough bread. Lebensm.Wiss. U. Technol. 35: 38-45.
  • Larsen, G.A., Vogensen, F.K. and Josephsen, J. 1993. Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacşius bavaricus Ml401. J. Appl. Microbiol., 75: 113-122.
  • Macrina, F.L., Kopecko, D.J., Jones, K.Ft., Ayers, U.S. and McCoven, S.M. 1978. A multiple plasmid containing Esherichia coli strain: convenient source of size reference plasmid molecules. Plasmid, 1: 417-420.
  • Menteş, Ö., Akçelik, M. ve Ercan, H. 2004. Türkiyede üretilen ekşi hamurlardan Laclobacillus suşlarının izolasyonu, identifikasyonu ve bu suşların temel endustriyel özellikleri. Gıda. 5: 337-343. ı64 GIDA YIL: 30 SAYI : 3 MAYIS-HAZİRAN 2005
  • Messi. P., Bondi, M.. Sabia. C.. Bottini, R. and Manicardi, G. 2001. Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobaclllus plantarum strain. int. J. Food Microbiol., 64: 193-198.
  • Neysens, P., Messens, W. and De Vuyst, L. 2003. Effect of sodium chloride on growth and bacteriocin production by Lactobacillus amylovorus DCE 471. int. J. Food Microbiol.. 2730: 1-11.
  • Ogunbanwo, S.T., Sanni, A.'|. a'nd Onilude, A.A. 2003. Characterization of bacteriocin produced by Lactobacillus planiarum F1 and Laclobacillus brevis OG1. African Journal of Biotechnology, 2(8): 219-227.
  • Paavola, M.L.N., Laitala, A., Sandholm, T.M. and Haikara. A. 1999. New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol.. 86: 29-35.
  • Hollan, G. and Valdez, G.F. 2001. The peptide hydrolase system of Lactobacillus reuterl. Int. J. Food Microbiol., 70: 303-307.
  • Fiosenquist, H. and Hansen, A. 1998. The antimicrobial effect of organic acids, sour dough and nisin against Bacillus subtilis and Bacillus licheniformis isolated from wheat bread. J. Appl. Microbiol., 85: 621—631.
  • Schaffer. HE. and Sederol, RH. 1981. Improvement estimation of DNA fragment lengths from agarose gels. Analiytical Biochemistry, 115: 122-133.
  • Southern, EM. 1979. Measurement of DNA ienggths by gel electrophoresis. Analytical Biochemistry, 100: 319-323.
  • Suma, K., Misra. M. C. and Varadari. M. C. 1998. Plantaricin LP84, a broad spectrum heat stable bacteriocin of Lactobacillus plantarum NCIM 2084 produced in a simple glucose broth medium. Int. J. Food Microbiol.. 40: 17-25.
  • Tagg. J.H.. Dajani. A.S. and Wannamaker. LW. 1976. Bacteriocin of Gram-positive Bacteria. Bacteriological Reviews, 40: 722-756.
  • Thompson. J.M., Waites. WM. and Dodd, C.E.R. 1998. Detection of rope spoilage in bread caused by Bacillus species. J. Appl. Microbiol.. 85: 481-86. '
  • Tomas, M.S.J., Bru, E.. Wiese, B.. de Fiuiz Hotgado, A.P. and Nader-Macias, M.E. 2002. Influence of pH, temperature and culture media on the growth and bacteriocin production by vaginal Lactobacillus sallvarius CRL1328. J. Appl. Microbiol.. 93: 714-724.
  • van Fieenen, C.A., Dicks, l..M.T. and Chikindas. ML. 1998. Isolation. purification and partial characterization of plantaricin 423, a bacteriocin produced by Lacrobacillus plantarum. J. Appl. Microbiol., 84: 1131-1137.
  • Vaughan, A., Eijsink, V.G.H., O’Sullivan, T.F. and O‘Hanlon. K. 2001. An analysis of bacteriocins produced by lactic acid bacteria isolated from malted barley. J. Appl. Microbiol., 91: 131-138.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR