The effect of acoustic energy on viscosity and serum separation of traditional ayran, a Turkish yogurt drink

Geleneksel Ayranın reolojik davranışları ve depolama sonrası serum ayrılması üzerine akustik enerjinin etkisi araştırıldı. Ayran örnekleri yoğurda %40 (w/w) su ve %1 tuz (w/w) ilave edilerek hazırlandı. Elde edilen Ayranlara 20kHz frekansta çalışan bir ultrases işlemcisiyle 2 ve 4 dakika ultrases işlemi uygulandı. Ultrases genlik seviyesi %40 (22.91W), %60 (33.38W) ve %80 (44.54W) olarak kullanıldı. Viskozite 20, 30, 50, 60, 100, 200 rpm’de rotasyonel viskozimetre kullanılarak ölçüldü. En yüksek viskozite değeri 4 dakikalık işlem süresinde 44.54 güç seviyesinde elde edildi. Ayrıca, akustik enerjinin ayranın serum ayrılması üzerine önemli bir etkiye sahip olduğu gözlendi. Ayranın reolojik özelliklerini tanımlamak için deneysel power-law modeli kullanıldı. Modele ait regresyon katsayıları 0.891 ve 0.997 arasında değiştiği gözlendi. Ayran Newtoniyal olmayan pseudoplastik bir davranış sergiledi.

Geleneksel ayranın viskozite ve serum ayrılması üzerine akustik enerjinin etkisi

The effect of acoustic energy on the rheological behaviour and serum separation during storage of traditional Ayran, which is a mixture of yogurt, water and salt, was investigated. Ayran samples were prepared by the addition of water at a level of 40% (w/w) and salt at a level of 1% (w/w) and stored at 4 °C. They were sonicated for two and four minutes using an ultrasonic generator at a frequency of 20 kHz. The ultrasonic amplitudes used were 40% (22.91W), 60% (33.38W) and 80% (44.54W). Viscosity was measured using a rotational viscometer at the speed of 20, 30, 50, 60, 100 and 200 rpm. The highest apparent viscosity in Ayran was obtained at 44.54 W power level for 4 minutes. In addition, it was obtained that acoustic energy had a significant effect on the serum separation of Ayran. An empirical power-law model was used to describe the rheological behaviour of Ayran samples with regression coefficients between 0.891 and 0.997. Ayran exhibited a pseudoplastic behaviour, non-Newtonian.

___

  • 1. Koksoy A, Kilic M. 2004. Use of hydrocolloids in textural stabilisation of a yoghurt drink. Ayran. Food Hydrocolloids, 18 (4), 593-600.
  • 2. Koksoy A, Kilic M. 2003. Effects of water and salt level on rheological properties of Ayran. Turkish yoghurt drink. Int J Dairy Sci, 13(10), 835-839.
  • 3. Ozdemir U, Kilic M. 2004. Influence of fermentation conditions on rheological properties and serum separation of Ayran. J Texture Stud, 35(4), 415-428.
  • 4. Jelen P, Currie R, Kadis VW. 1987. Compositional analysis of commercial whey drinks. J Dairy Sci, 70 (4), 892-895.
  • 5. Lokumcu F, F›ratl›gil Durmufl E, Evranuz O. 2002. Determination of rheological properties of several Ayrans sold in Istanbul area. In proceedings of seventh Turkish food congress, Ankara, Turkey, 257-265.
  • 6. Benezech T, Maingonnat JF. 1994. Characterisation of the rheological properties of yoghurt – A review. J Food Eng, 21 (4), 447-472.
  • 7. Shaker RR, Jumah RY, Abu-Jdayil B. 2000. Rheological properties of plain yogurt during coagulation process: impact of fat content and preheat treatment of milk. J Food Eng, 44 (3), 175-180.
  • 8. Penna ALB, Sivieri K, Oliveira MN. 2001. Relation between quality and rheological properties of lactic beverages. J Food Eng, 49 (1), 7-13.
  • 9. Amice-Quemeneur N, Haluk JP, Hardy J, Kravtchenko TP. 1995. Influence of the acidification process on the colloidal stability of acidic milk drinks prepared from reconstituted non-fat dry milk. J Dairy Sci, 78(12), 2683-2690.
  • 10. Behrend OAxK, Schubert H. 2000. Influence of continuous phase viscosity on emulsification by ultrasound. Ultrason Sonochem, 7(2), 77-85.
  • 11. Canselier JP, Delmas H, Wilhelm AM, Abismail B. 2002. Ultrasound emulsification-An overview. J Disper Sci Technol, 23 (1-3), 333-–349.
  • 12. Jafari SM, He Y, Bhandari B. 2006. Nano-Emulsion Production by Sonication and Microfluidization - A Comparison. Int J Food Prop, 9(3), 475-485.
  • 13. Patist A, Bates D. 2008. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov Food Sci Emerg, 9(2), 147-154.
  • 14. Lorimer JP, Mason TJ. 1987. Sonochemistry Part 1- The Physical Aspects, Chemical Society Reviews, 16, 237-274.
  • 15. Abismail B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C. 1999. Emulsification by ultrasound: Drop size distribution and stability. Ultrason Sonochem, 6 (1-2), 75-83.
  • 16. Metin M. 2008. Süt ve Mamülleri Analiz Yöntemleri. Ege Üniversitesi Press, Bornova, ‹zmir, Turkey, p439,
  • 17. Kurt A, Çakmakç› S, Ça¤lar A. 2007. Süt ve Mamülleri Muayene ve Analiz Metotlar› Rehberi, Atatürk Üniversitesi Yay›nlar›, Erzurum, Turkey, p254.
  • 18. Kimura T, Sakamoto T, Leveque J, Sohmiya H, Fujita M, Ikeda S, Ando T. 1996. Standardization of ultrasonic power for sonochemical reaction. Ultrason Sonochem, 3(3), 157-161.
  • 19. Heikal YA, Chhinnan MS. 1990. Rheological characterization of tomato puree at different temperatures using two types of viscometers. In, Spiess WEL and Schubert H (Eds): Engineering and Food: Vol. I, Physical properties and process control. Elsevier Science Publishers, London, 151-158.
  • 20. Ipsen R, Otte J, Dominguez E, Qvist KB. 2000. Gelation of whey protein induced by proteolysis or high pressure treatment. Aust J Dairy Technol, 55(2), 49-52.
  • 21. Wu H, Hulbert GJ, Mount JR. 2001. Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innov Food Sci Emerg, 1(3), 211-218.
  • 22. Chhinnan MS, McWaters KH, Rao VNM. 1985. Rheological characterisation of grain legume pastes and effect of hydration time and water level on apparent viscosity. J Food Sci, 50(4), 1167–1171.
  • 23. Kristensen D, Jensen PY, Madsen F, Birdi KS. 1997. Rheology and surface tension of selected processed dairy fluids: Influence of temperature. J Dairy Sci, 80(10), 2282-2290.
  • 24. Kiani H, Mousavi SMA, Djomah ZE. 2008. Rheological properties of Iranian yoghurt drink, doogh. Int J Dairy Sci, 3, 71-78.
  • 25. Shukla TP. 1992. Microwave ultrasonics in food processing. General Food World, 37(4), 332-333.