peynirde aminoasit katabolizması ile lezzet bileşenlerinin oluşumu

Peynirde lezzet oluşumuna katkıda bulunan en önemli biyokimyasal reaksiyonlar, peynir olgunlaşması süresince proteoliz sonucunda oluşmaktadır. Peynirin temel proteini kazein, peynir pıhtılaştırıcı enzimler ve çeşitli diğer faktörlerle küçük peptidlere ve serbest aminoasitlere kadar parçalanarak ürünün lezzetini ve yapısını önemli düzeyde etkilemektedir. Starter ve starter olmayan bakterilerin aminoasit katabolizması ile peynirlerin spesifik lezzetleri oluşur. Peynirde enzimatik dönüşümlerin yanı sıra enzimatik olmayan, kimyasal dönüşümler ile de bazı lezzet bileşenleri oluşmaktadır. Bu makalede çeşitli peynirlerde olgunlaşma süresince aminoasit katabolizması ile lezzet bileşenlerinin oluşumu derlenmiştir.

Formation of flavor compounds by amino acid catabolism in cheese

Biochemical reactions which contribute flavor formation occur in result of proteolysis during cheese ripening. Casein as the main protein of cheese has a significant effect on the flavor and textural properties of cheeses via its degradation to small peptides and free amino acids by various factors like coagulant enzymes. Specific flavors of cheeses occur as a result of amino acid catabolism by starter and non-starter bacteria. Some flavor compounds are formed by enzymatic transformations as well as by non-enzymatic, chemical changes in cheese. In this paper, formation of flavor compounds by amino acid catabolism during cheese ripening reviewed.

___

  • 1. Smit G, Smit BA, Engels, WJM. 2005. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev, 29: 591–610.
  • 2. Law BA. 1984. Flavour Development in Cheeses, In: Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk, FL Davies and BA Law (eds), pp. 187-206, Elsevier at Lied Science Publishers.
  • 3. Urbach G. 1995. Contribution of lactic acid bacteria to flavour compound formation in dairy products. Int Dairy J, 5: 877–903.
  • 4. Aston JW, Douglas K. 1983. The production of volatile sulphur compounds in Cheddar cheeses during accelerated ripening. Aust J Dairy Technol, 38: 66–70.
  • 5. McSweeney PLH, Fox PF. 1997. Indices of Cheddar cheese ripening. Proc. 5th Cheese Symp, Moorepark, Fermoy, Co. pp. 73–89, Cork, Ireland.
  • 6. Puchades R, Lemieux L, Simard RE. 1989. Evolution of free amino acids during ripening of Cheddar cheese containing added lactobacilli strains. J Food Sci, 54: 885–888, 946.
  • 7. Broome MC, Krause DA, Hickey MW. 1990. The use of non-starter lactobacilli in Cheddar cheese manufacture. Aust J Dairy Technol, 45: 67–73
  • 8. Fox PF, Wallace JM. 1997. Formation of flavour compounds. Adv Appl Microbiol, 45: 17–85.
  • 9. Fox PF, McSweeney PLH. 1996. Proteolysis in cheese during ripening. Food Rev Int, 12 (4): 457–509
  • 10. Christensen JE, Dudley EG, Pederson JA, Steele JL. 1999. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Leeuwenhoek, 76: 217–246.
  • 11. Smit G, van Hylckama Vlieg JET, Smit BA, Ayad EHE, Engels WJM. 2002. Fermentative formation of flavour compounds by lactic acid bacteria. Aust J Dairy Technol, 57 (2): 61-68.
  • 12. Molimard P, Spinnler, HE. 1996. Review: compounds involved in the flavour of surface moldripened cheeses: origins and properties. J Dairy Sci, 79:169–184.
  • 13. Fox PF, Singh TK, McSweeney PLH. 1998. Biogenesis of flavour compounds in cheese. In: Chemistry of StrucŞekil ture/Function Relationships in Cheese. EL Malin and MH Tunick (eds.), pp. 59–98, Plenum Press, New York.
  • 14. Polo C, Ramos M, Sanchez R. 1985. Free amino acids by high performance liquid chromatography and peptides by gel electrophoresis in Mahon cheese during ripening. Food Chem, 16: 85–96.
  • 15. Joosten HMLJ, Stadhouders J. 1987. Conditions allowing the formation of biogenic amines in cheese. 1: Decarboxylase properties of starter bacteria. Neth. Milk Dairy J, 41: 247–258.
  • 16. Sieber R, Lavanchy P. 1990. Biogenic amines in dairy products and cheese. Mitt. Geb. Lebensm. Hyg, 81: 82 105.
  • 17. Santos MH. 1991. Biogenic amines: their importance in foods. Int J Food Microbiol, 29: 213–231.
  • 18. McSweeney PLH, Sousa MJ. 2000. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Lait, 80: 293–324.
  • 19. Karahadian C, Lindsay RC. 1987. Integrated roles of lactate, ammonia, and calcium in texture development of mold surface-ripening cheese. J Dairy Sci, 70: 909–918.
  • 20. Fernández M, Zúñiga M. 2006. Amino acid catabolic pathways of Lactic Acid Bacteria. Critical Reviews in Microbiol, 32:155-183.
  • 21. Dunn HC, Lindsay RC. 1985. Evaluation of the role of microbial Strecker-derived aroma compounds in unclean-type flavours of Cheddar cheese. J Dairy Sci, 68: 2859–2874.
  • 22. Adda J, Gripon JC, Vassal L. 1982. The chemistry of flavour and texture generation in cheese. Food Chem, 9: 115–129.
  • 23. Bosset JO, Liardon R. 1985. The aroma composition of Swiss Gruyère. III. Relative changes in the content of alkaline and neutral components during ripening. Lebensm Wiss u Technol, 18: 178–185.
  • 24. Gripon JC, Monnet V, Lamberet G, Desmazeaud MJ. 1991. Microbial enzymes in cheese ripening. In: Food Enzymes, Fox PF. (eds), pp. 131–168, Elsevier Appl Sci, London.
  • 25. Kim JC, Olson NF. 1989. Production of methanethiol in milk-fat coated microcapsules containing Brevibacterium linens and methionine. J Dairy Res, 56: 799–811.
  • 26. Adda J, Czulak J, Mocquot G, Vassal L. 1988. In: Cross HR, Overby AJ (eds). pp. 373–392, Cheese, Meat Science, Milk Science and Technology, Elsevier Sci. Publ., Amsterdam, The Netherlands.
  • 27. Manning DJ. 1979. Cheddar cheese flavour studies. II: Relative flavour contributions of individual volatile components. J Dairy Res, 46: 523–529.
  • 28. Manning DJ. 1979. Chemical production of essential flavour compounds. J Dairy Res, 46: 531–537.
  • 29. Hemme D, Bouillane C, Metro F, Desmazeaud MJ. 1982. Microbial catabolism of amino acids during cheese ripening. Sci. Aliment, 2: 113–123.
  • 30. Dimos A, Urbach GE, Miller AJ. 1996. Changes in flavour and volatiles of full-fat and low-fat cheeses during maturation. Int Dairy J, 6: 981–995.
  • 31. Aston JW, Dulley JR. 1982. Cheddar cheese flavour. Aust J Dairy Technol, 37: 59–64.
  • 32. Barbeiri G, Bolzoni L, Careri M, Mangia A, Parolari G, Spagnoli S, Virgili R. 1994. Study of the volatile fraction of Parmesan cheese. J Agric Food Chem, 42: 1170–1176.
  • 33. Muller CJ, Kepner RE, Webb AD. 1971. Identification of 3-(methylthio)-propanol as an aroma constituent in Cabernet Sauvignon and Ruby Cabernet wines. Am J Enol Vitic, 22: 953.
  • 34. Dumont JP, Roger S, Adda J. 1976. Camembert aroma: identification of minor constituents. Lait, 56: 595– 599.
  • 35. Wijesundera C, Urbach G. 1993. Flavour of Cheddar cheese. Final Report to the Dairy Research and Development Corporation. PO Box 8000, Glen Iris 3146, Victoria, Australia, pp. 31.
  • 36. Meinhart E, Schreier P. 1986. Study of flavour compounds from Parmagiano Reggiano cheese. Milchwissenschaft, 41: 689–691.
  • 37. Ferchichi M, Hemme D, Boullianne C. 1986. Influence of oxygen and pH on methanethiol production from L methionine by Brevibacterium linens CNRZ 918. Appl Environ Microbiol, 51: 725–729.
  • 38. Ferchichi M, Hemme D, Nardi M. 1986. Induction of methanethiol production by Brevibacterium linens CNRZ 918. J Gen Microbiol, 132: 3075–3082.
  • 39. Parliment TH, Kolor MG, Rizzo DJ. 1982. Volatile components of Limburger cheese. J Agric Food Chem, 30: 1006–1008.
  • 40. Gao S, Oh DH, Broadbent JR, Johnson ME, Weimer BC, Steele JL. 1997. Aromatic amino acid catabolism by lactococci. Lait, 77: 371–381.
  • 41. Hummel WW, Kula MR. 1984. Isolation and characterization of a bacterium possessing L-phenylalanine dehydrogenase activity. Arch Microbiol, 137: 47–52.
  • 42. Jollivet N, Bezenger MC, Vayssier Y, Belin JM. 1992. Production of volatile compounds in model milk and cheese media by eight strains of Geotrichum candidum. J Dairy Res, 61: 241–248.
  • 43. Elsden SR, Hilton MG, Waller JM. 1976. The end products of the metabolism of aromatic amino acids by Clostridia. Arch Microbiol, 107: 283–288.
  • 44. McCabe BJ. 1986. Dietary tyramine and other pressor amines in MAOI regimens: a review. J Am Diet Assoc, 86: 1059–1064.
  • 45. Zoon P, Allersma, D. 1996. Eye and crack formation in cheese by carbon dioxide from decarboxylation of glutamic acid. Neth Milk Dairy J, 50: 309–318.
  • 46. Marshall JD, Cole WM. 1983. Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavour production in fermented milks. J Dairy Res, 50: 375–379.
  • 47. Tamine AY, Deeth HC. 1980. Yogurt, technology and biochemistry. J Food Protect, 43: 939.
  • 48. Ardö Y. 2006. Flavour formation by amino acid catabolism. Biotechnol Adv, 24:238– 242.
  • 49. Preininger M, Warmke R, Grosch W. 1996. Identification of the character impact flavour compounds of Swiss cheese by sensory studies of models. Z Lebensm Unters Forsch, 202: 30–34.
  • 50. Casey J, Dobb R. 1992. Microbial routes to aromatic aldehydes. Enzyme Microbiol Technol, 14: 739–747.
  • 51. Sieber R, Butikofer U, Bosset JO. 1995. Benzoic acid as a natural compound in cultured dairy products and cheese. Int Dairy J, 5: 227–246.
  • 52. Avsar YK, Karagul-Yuceer Y, Drake, MA, Singh TK, Yoon Y, Cadwallader KR. 2004. Characterization of Nutty Flavor in Cheddar Cheese. J Dairy Sci, 87: 1999–2010.