LTHV (LOW TEMPERATURE AND HIGH VELOCITY) DRYING CARACTERISTICS AND MATHEMATICAL MODELING OF ANCHOVY (ENGRAULIS ENCRASICOLUS)

Bu çalışmanın temel amacı, Hamsinin (Engraulis encrasicolus) LTHV kurutma özelliklerini deneysel olarak araştırmaktır. Bu amaçla, 100 g Hamsi örnekleri ~% 38 bağıl nemde ~7 m/s hıza sahip hava kullanılarak, 4, 10, 15 ve 20 °C sıcaklıklarda kurutuldu. Deneyler sırasında ağırlık kaybı, sıcaklık, kuruma hızı ve bağıl nemi değerleri belirlenmiştir. Hamsi filetolarının ağırlığı, 4 °C'de 25 saatte, 100 g'dan 47.6 g 'a, 10 °C'de 23 saatte 46.7 g'a, 15 °C'de 20 saatte 45.3 g'a, 20°C'de 13 saatte 44.67 g'a düşmüştür. Bu kapsamda, gözlemlenen kurutma deney verileri üzerine yirmi üç ortak matematiksel model uygulanmıştır. Sonuç olarak, Hamsinin her LTHV kurutma sıcaklığı için en uygun matematiksel modeller belirlenmiştir. En uygun modeli belirlemek için R2 (Determinasyon Katsayıları), X2 (Ki-Kare) ve RMSE (Tahmini Standart Hata) kullanılmıştır. Elde edilen sonuçlara göre, Logaritmik (Asimptotik), Midilli-Küçük, Demir ve diğerleri, Balbay ve Şahin, her LTHV kurutma sıcaklığı için 4, 10, 15 ve 20 °C'de en uygun matematiksel modeller olduğu belirlenmiştir. Sonuç olarak, hamsinin ince tabaka LTHV kurutma karakteristiğini en iyi temsil edecek en uygun modeller ortaya konmuştur

HAMSİ'NİN (ENGRAULIS ENCRASICOLUS) LTHV (DÜŞÜK SICAKLIK VE YÜKSEK HIZ) KURUTMA KARAKTERİSTİKLERİ VE MATEMATİKSEL MODELLENMESİ

The main target of this work is to investigate the LTHV drying properties of Anchovy (Engraulis encrasicolus) experimentally. For this purpose, 100 g of anchovy samples were dried using ~7 m/s velocity and ~38% relative humidity at 4, 10, 15 and 20 °C. During the drying experiments, temperature, mass loss, drying air velocity and humidity were investigated. The weight of raw Anchovy fillets decreased from 100 g to 47.6 g at 4 °C for 25 h, 46.7 g at 10 °C for 23 h, 45.3 g at 15 °C for 20 h and 44.67 g at 20 °C for 13 h. In this context, Twenty-three common mathematical models were used on the experimental LTHV drying results. As result, the most suitable models of LTHV drying were determined for the each LTHV drying temperature. The R2 (determination coefficient), X2 (chi square) and RMSE (root mean square error) were applied to find the most suitable models. In this regard, Logarithmic (Asymptotic), Midilli-Kucuk, Demir et al, Balbay-Sahin models were chosen as the best mathematical models for each LTHV drying temperature at 4, 10, 15 and 20 °C. Consequently, the best single layer drying curve equations were chosen as the optimal models for LTHV drying of anchovy

___

  • AOAC (1995). Official methods of analysis. Association of Official Analysis Chemists, 16th Edition, V II, Arlington, VA, USA, pp. 938-940.
  • Akpinar, E. Kavak, Bicer, Y. (2008). Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energ Convers Manage, 49(6): 1367-1375.
  • Chairi, H., Rebordinos, L. (2014). A rapid method for differentiating four species of the Engraulidae family. J Agric Food Chem, 62(13): 2803-2808.
  • Chin, S.K., Law, C.L., Supramaniam, C.V.S., Cheng, P.G., Mujumdar, A.S. (2008). Convective drying of G. tsugae murrill and effect of temperature on basidiospores. Dry Technol, 26(12): 1524-1533.
  • Cruess, W.V. (1958). Commercial fruit and vegetable products. McGraw Hill, New York, pp. 1958-884. ISBN: 13 9780070148086.
  • Cyprian, O. O., Nguyen, V. M., Sveinsdottir, K., Jonsson, A., Thorkelsson, G., Arason, S. (2015).
  • Influence of lipid content and blanching on capelin drying rate and lipid oxidation under low temperature drying. J Food Process Eng, 39(3): 237- 246.
  • Dincer, I. (1996). Sun drying of sultana grape. Dry Technol, 14(7):1827-1838.
  • Dincer, I. (1998). Moisture loss from wood products during drying Part 1: Moisture diffusivities and moisture transfer coefficients, Energy Sources, 20(1): 67-75.
  • Dongbang, W., Matthujak, A. (2013). Anchovy drying using infrared radiation. Am J Appl Sci, 10(4): 353-360. Hall, C.W. (1980). Drying and storage of agricultural crops. AVI Publish Company, Inc., Westport, pp. 100-266. ISBN: 087055364X, 9780870553646.
  • Jan, K, Riar C.S., Saxena, D.C. (2014). Mathematical modelling of thin-layer drying kinetics of biodegradable pellets. J Food Process Technol, 5(9): 370, doi: 10.4172/2157- 7110.1000370. Keey, R.B. (1992). Drying of loose and particulate materials. Dry Technol, 10(4): 1139-1141, doi.org/10.1080/07373939208916507.
  • Kilic, A., Oztan, A. (2013). Effect of ascorbic acid utilization on cold smoked fish quality (O. mykiss) during process and storage. Food Sci Technol Res, 19(5) 823-831 p.
  • Kilic, A. (2009). Low temperature and high velocity (LTHV) application in drying: Characteristics and effects on the fish quality, J Food Eng, 91(1): 173-182, doi.org/10.1016/j.jfoodeng.2008.08.023.
  • Kilic, A. (2017). Mathematical modeling of low temperature high velocity (LTHV) drying in Foods. J Food Process Eng, 40(2): e12378, doi:10.1111/jfpe.12378.
  • Kilic, A., Kucuk, H., Midilli, A. (2014). Environmental friendly food smoking technologies. In: Progress in Sustainable Energy Technologies. Dincer, I., Midilli, A., Kucuk, H., (chief ed.), Springer press, USA, pp. 557-576.
  • Kilic, A., Midilli, A., Dincer, I. (2009). A strategic program to reduce greenhouse gases emissions produced from food industry. In: Global Warming: Engineering Solutions, Green Energy and Technology Series. Dincer I., Hepbasli A., Midilli A., Karakoc T. (chief ed.), Springer press, USA, pp. 197-210.
  • Kilic, A., Midilli, A., Dincer, I. (2010). A novel fish drying technique for better environment, quality and sustainability. IJGW, 2(3): 262-278, doi.org/10.1504/IJGW.2010.036137.
  • Kosuke, N., Li, Y., Jin, Z., Fukumuro, M., O., Y., Akaishi, A. (2006). Low temperature desiccant based food drying system with airflow and temperature control. J Food Eng, 75(1): 71-77, doi.org/10.1016/j.jfoodeng.2005.03.051.
  • Kucuk, H., Midilli, A., Kilic, A., Dincer, I. (2014). A Review on Thin-layer drying curve equations. Dry Technol, 32(7): 757-773, doi.org/10.1080/07373937.2013.873047.
  • Midilli A. (2001). Determination of pistachio drying behavior and conditions in a solar drying system. Int J Energ Res, 25: 715-725, doi: 10.1002/er.715.
  • Midilli, A., Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energ Convers Manage, 44(7): 1111- 1122, doi.org/10.1016/S0196-8904(02)00099-7.
  • Midilli, A., Kucuk, H., Yapar, Z. A . (2002). New model for single layer drying. Dry Technol. 20(7): 1503-1513, doi.org/10.1081/DRT-120005864.
  • Moraes, K. De, Pinto, L. A. De, A. (2013). Drying kinetics, biochemical and functional properties of products in convective drying of Anchovy (E. anchoita) fillets. Int J Food Eng, 9(4): 341-351, doi 10.1515/ijfe-2012-0213.
  • Olgun, H., Kose S. (1999). Solar drying of Trout, Int J Energ Res, 23: 941-948.
  • Putra, R. N., Ajiwiguna, T. A. ( 2017 ). Influence of air temperature and velocity for drying process. Procedia Engineering, 170: 516-519, doi.org/10.1016/j.proeng.2017.03.082.
  • Van Loey, A.M., Smout, C., Indrawati H. M.E. (2005). Kinetic data for biochemical and microbiological processes during thermal processing. In: Engineering Properties of Foods Microbiology, Rao MA, Rizvi SSH, Datta Ak, (chief ed.), 3rd ed., CRC Press, Taylor & Francis, pp. 611-643
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR
Sayıdaki Diğer Makaleler

LAKTİK ASİT BAKTERİLERİNİN AFLATOKSİN B1 BAĞLAYICI VE ANTİKANSEROJEN ÖZELLİKLERİ

Şebnem Kurhan, İbrahim ÇAKIR

ROOİBOS ÇAYI İÇECEĞİNİN FİZİKOKİMYASAL ÖZELLİKLERİ İLE FENOLİK MADDE VE ANTİOKSİDAN KAPASİTE YÖNÜNDEN BİYOALINABİLİRLİĞİNİN ARAŞTIRILMASI

Senem SUNA

ULTRASON UYGULAMASININ SÜT ÜRÜNLERİNDE HOMOJENİZASYON, JEL YAPISI, VİSKOZİTE VE SU TUTMA KAPASİTESİ ÜZERİNE ETKİSİ

Vildan AKDENİZ, Ayşe Sibel AKALIN

ELEKTROEĞİRME YÖNTEMİ VE GIDA ALANINDAKİ NANOSENSÖR UYGULAMALARI

Aylin ALTAN METE, Meryem YILMAZ

LTHV (LOW TEMPERATURE AND HIGH VELOCITY) DRYING CARACTERISTICS AND MATHEMATICAL MODELING OF ANCHOVY (ENGRAULIS ENCRASICOLUS)

Aydin KİLİC

SUCUK ÜRETİMİNDE KURUTULMUŞ MANTAR (AGARICUS BISPORUS) İLAVESİNİN MİKROBİYOLOJİK KALİTE VE BİYOJENİK AMİN İÇERİĞİ ÜZERİNE ETKİLERİ

Hüseyin GENÇCELEP, Ömer ZORBA

LİYOFİLİZE BAZI MİKROALG TÜRLERİNİN SAKIZ BİLEŞİMİNDE DOĞAL RENKLENDİRİCİ OLARAK KULLANIMI

İbrahim PALABIYIK

ET EMÜLSİYONLARININ BAZI FİZİKSEL VE TEKSTÜREL ÖZELLİKLERİ ÜZERİNE FARKLI MODİFİYE NİŞASTALARIN ETKİLERİ

Hüseyin GENÇCELEP, Münir ANIL, Furkan Türker SARICAOĞLU, Berrin AĞAR

BİYOBAZLI NANOKOMPOZİTLER VE GIDA AMBALAJLAMADAKİ UYGULAMALARI

Ece SÖĞÜT, Atif Can SEYDİM

ÇEŞİTLİ FIRINCILIK ÜRÜNLERİNİN HİDROKSİMETİLFURFURAL İÇERİĞİ, ANTİOKSİDAN AKTİVİTESİ VE KOLORİMETRİK ÖZELLİKLERİ ARASINDAKİ İLİŞKİLER

Müge Hendek Ertop, Sevim Beyza Öztürk Sarıkaya