LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON

Çalışmada, 31 Lactobacillus delbrueckii subsp. bulgaricus ve 34 Streptococcus thermophilus bakteri kültürlerinde, o-nitrofenil-beta-D-galaktosit (o-NPG) substrat olarak kullanılarak, β-galaktosidaz enzim ve spesifik aktiviteleri taranmıştır. L. delbrueckii subsp. bulgaricus suşları 0.186-6.500 U/mg arasında spesifik aktivite gösterirken, S. thermophilus suşları 0.172-5.064 U/mg arasında spesifik aktivite göstermiştir. L. delbrueckii subsp. bulgaricus ZN541 (6.500 U/mg) ve S. thermophilus Z1052 (5.064 U/mg) suşlarının yüksek spesifik aktivite yeteneğine sahip oldukları tespit edilmiştir. Yüksek spesifik β-galaktozidaz aktivitesi gösteren ZN541 ve Z1052 suşları seçilerek, farklı koşulların (pH, sıcaklık, laktoz konsantrasyonu ve fermantasyon süresi) bu suşlara ait β-galaktozidaz enzimlerin aktivitelerine etkileri belirlenmiştir. ZN541 suşunda optimum enzim aktivitesi için gereken pH’ın 6.2, sıcaklığın 42°C, laktoz konsantrasyonunun %2 ve fermantasyon süresinin 24 saat olduğu tespit edilmiştir. Z1052 suşunda ise optimum enzim aktivitesi için gereken pH’ın 6.8, sıcaklığın 42°C, laktoz konsantrasyonun %4 ve fermantasyon süresinin 24 saat olduğu belirlenmiştir.

BETA GALACTOSIDASE ACTIVITY IN LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 AND STREPTOCOCCUS THERMOPHILUS Z1052 STRAINS AND OPTIMIZATION

In this study, thirty-one Lactobacillus delbrueckii subsp. bulgaricus and thirty-four Streptococcus thermophilus were screened for β-galactosidase enzyme activities and specific activities. The β-galactosidase enzyme activities were determined by using o-nitrophenyl-beta-D-galactopyranoside (o-NPG) as a substrate. L. delbrueckii bulgaricus strains showed specific activity between 0.186-6.500 U/mg, while S. thermophilus strains exhibited specific activity between 0.172-5.064 U/mg. The highest specific enzyme activities among bacteria cultures were determined at L. delbrueckii subsp. bulgaricus ZN541 (6.500 U/mg) and S. thermophilus Z1052 (5.064 U/mg) strains. The ZN541 and Z1052 strains that showed high specific β-galactosidase activity were selected and the effects of different conditions (pH, temperature, lactose concentration, and fermentation time) on the activities of β-galactosidase enzymes of these strains were determined. It was determined that the pH required for optimum enzyme activity in ZN541 strain was 6.2, the temperature was 42°C, the lactose concentration was 2% and the fermentation time was 24 hours. In the Z1052 strain, the pH required for optimum enzyme activity was 6.8, the temperature was 42°C, the lactose concentration was 4%, and the fermentation time was 24 hours.

___

  • 1. Alves, F., Filho, F., Medeiros Burkert, J., Kalil, S. (2010). Maximization of β-Galactosidase production: A simultaneous ınvestigation of agitation and aeration effects. Appl Biochem Biotech, 160: 1528–1539.
  • 2. Carević, M., Vukašinović-Sekulić, M., Grbavčić, S., Stojanović, M., Mihailović, M. Dimitrijević, A., Bezbradica, D. (2015). Optimization of β-galactosidase production from lactic acid bacteria. Chem Ind, 69 (3): 305–312.
  • 3. Das, S., Mishra B.K., Hati, S. (2020). Effect of nutritional factors on growth behaviour, proteolytic, β-glucosidase and β-galactosidase activities of Lactobacillus cultures during soy-drink fermentation. Curr Res Nut Food Sci, 8 (3): 877-888.
  • 4. Delgado-Fernandez, P., Plaza-Vinuesa, L., Lizasoain-Sánchez, S., de las Rivas, B., Muñoz, R., Jimeno, M.L., García-Doyagüez, E., Moreno, F.J., Corzo, N. (2020). Hydrolysis of lactose and transglycosylation of selected sugar alcohols by LacA β‑galactosidase from Lactobacillus plantarum WCFS1. J Agric Food Chem, 68: 7040−7050.
  • 5. Deng, Y., Xu, M., Ji, D., Agyei, D. (2020) Optimization of β-galactosidase production by batch cultures of Lactobacillus leichmannii 313 (ATCC 7830). Fermentation, 6: 27.
  • 6. Gobinath, D. and Prapulla, S.G. (2015). Transgalactosylating β-galactosidase from probiotic Lactobacillus plantarum MCC2156: Production and permeabilization for use as whole cell biocatalyst. J Food Sci Technol, 52: 6003–6009.
  • 7. Gomaa, E.Z. (2018). Beta-galactosidase from Lactobacillus delbrueckii and Lactobacillus reuteri: Optimization, characterization and formation of galactooligosaccharides. Indian J Biotechnol, 17 (3): 407-415.
  • 8. Hsu, C.A., Yu, R.C., Chou, C.C. (2005). Production of β-galactosidase by Bifidobacteria as influenced by various culture conditions. Int J Food Microbiol, 104 (2): 197– 206.
  • 9. Ibrahim, A.H. (2018). Enhancement of β-galactosidase activity of lactic acid bacteria in fermented camel milk. J Food Agric, 30(4): 256-267.
  • 10. Inchaurrondo, V.A., Flores, M.V., Voget, C.E. (1998). Growth and β-galactosidase synthesis in aerobic chemostat cultures of Kluyveromyces lactis. J Ind Microbiol Biotechnol, 20: 291–298.
  • 11. Ismail, S.A.A., El-Mohamady, Y., Helmy, W.A., Abou-Romia, R., Hashem, A.M. (2010). Cultural condition affecting the growth and production of β-galactosidase by Lactobacillus acidophilus NRRL 4495. Aust J Basic Appl Sci, 4 (10): 5051-5058.
  • 12. Kara F. (2004). Release and characterization of beta-galactosidase from Lactobacillus plantarum. M.C. Thesis, Department of Biotechnology, Middle East Technical University, 89p.
  • 13. Kılıç, Y. (2013). Lactobacillus ve Bifidobacterium cinsi bakterilerin beta galaktosidaz enzim aktiviteleri. Gazi Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Yüksek Lisans Tezi, Ankara, Türkiye, 103 s.
  • 14. Kılıç, Y., Yüksekdağ, Z.N., Yüksekdağ, H. (2014). Lactobacillus ve Bifidobacterium cinsi bakterilerin beta galaktosidaz enzim aktivitelerinin belirlenmesi. GIDA, 39 (4): 211-218.
  • 15. Kim, J.W. and Rajagopal, S.N. (2000) Isolation and characterization of β-galactosidase from Lactobacillus crispatus. Folia Microbiol, 45: 29–34.
  • 16. Kittibunchakul, S., van Leeuwen, S.S., Dijkhuizen, L., Haltrich, D., Nguyen. T.H. (2020). Structural comparison of different galacto-oligosaccharide mixtures formed by β‑Galactosidases from Lactic Acid Bacteria and Bifidobacteria. J Agric Food Chem, 68: 4437−4446.
  • 17. Mahadevaiah, S., Basavaiah, R., Parida, M., Batra, H.V. (2020). Optimal production of β-galactosidase from Lactobacillus fermentum for the synthesis of prebiotic galactooligosaccharides (GOS). J Pure Appl Microbiol, 14(4): 2769-2780.
  • 18. Makwana, S., Hati, S., Parmar, H., Aparnathi, K.D. (2017). Process optimization for the production of β-galactosidase using potential Lactobacillus cultures. Int J Curr Microbiol App Sci, 6(8): 1454-1469.
  • 19. Mozumder, N.H.M.R., Akhtaruzzaman, M., Bakr, M.A., Tuj-Zohra, F. (2012). Study on isolation and partial purification of lactase (β-galactosidase) enzyme from Lactobacillus bacteria ısolated from yogurt. J Sci Res, 4 (1): 239-249.
  • 20. Murad, H.A., Refaea, R.I., Aly, E.M. (2011). Utilization of UF-permeate for production of β-galactosidase by Lactic Acid Bacteria. Pol J Microbiol, 60: 139–144.
  • 21. Özkan, E.R., Demirci, T, Öztürk, H.İ., Akına, N. (2020). Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. J Sci Food Agric, https://doi.org/10.1002/jsfa.10909.
  • 22. Panesar, P.S., Kumari, S., Panesar, R. (2010). Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res, 473137.
  • 23. Princely, S., Basha, N.S., Kirubakaran, J.J., Dhanaraju, M.D. (2013). Biochemical characterization, partial purification, and production of an intracellular beta-galactosidase from Streptococcus thermophilus grown in whey. Eur J Exp Biol, 3(2): 242-251.
  • 24. Serin, B ve Akcan, N. (2019). Katı faz fermantasyon tekniği ile Bacillus circulans ATCC 4516’dan ekstrasellüler β-galaktosidaz üretimi. KSU J Agric Nat, 22(3): 480-486.
  • 25. Shah, N.P. and Otieno, D.O. (2007). Endogenous β-glucosidase and β-galactosidase activities from selected probiotic microorganisms and their role in isoflavone biotransformation in soymilk. J Appl Microbiol, 103 (4): 910-917.
  • 26. Son, S.H., Jeon, H.L., Jeon, E.B., Lee, N.K., Park, Y.S., Kang, D.K., Paik, H.D. (2017). Potential probiotic Lactobacillus plantarum Ln4 from kimchi: Evaluation of β-galactosidase and antioxidant activities. LWT-Food Sci Technol, 85: 181-186.
  • 27. Ustok, F.I., Tari, C., Harsa, S. (2010). Biochemical and thermal properties of β-galactosidase enzymes produced by artisanal yoghurt cultures. Food Chem, 119: 1114–1120.
  • 28. Venkateswarulu, T.C., Prabhakar, K.V., Kumar, R.B. (2017). Optimization of nutritional components of medium by response surface methodology for enhanced production of lactase. 3 Biotech, 7: 202.
  • 29. Wheatley, R.W., Lo, S., Jancewicz, L.J., Dugdale, M.L., Huber, R.E. (2013). Structural explanation for allolactose (lac operon inducer) synthesis by lacz-galactosidase and the evolutionary relationship between allolactose synthesis and the lac repressor. J Biol Chem, 288: 12993–13005.
  • 30. Xin, Y., Guo, T., Zhang, Y., Wu, J., Kong, J. (2019). A new β-galactosidase extracted from the infant feces with high hydrolytic and transgalactosylation activity. Appl Microbiol Biotechnol, 103(20): 8439-8448.
  • 31. Yu, P., Li, N., Geng, M., Liu, Z., Liu X., Zhang, H., Zhao, J., Zhang, H., Chen W. (2020). Lactose utilization of Streptococcus thermophilus and correlations with β-galactosidase and urease. J Dairy Sci, 103 (1), 166–171.
  • 32. Zhang, H., Li, W, Rui, X., Sun, X., Dong, M. (2013). Lactobacillus plantarum 70810 from Chinese paocai as a potential source of β-galactosidase for prebiotic galactooligosaccharides synthesis. Eur Food Res Technol, 236: 817–826.
  • 33. Zhang, W., Wang, C., Huang, C.Y., Yu, Q., Liu, H.C., Zhang, C.W., Pei, X.F., Xu, X., Wang, G.Q. (2012). Analysis of β-galactosidase production and their genes of two strains of Lactobacillus bulgaricus. Biotechnol Lett, 34 (6): 1067-1071.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR
Sayıdaki Diğer Makaleler

LACTOBACILLUS ACIDOPHILUS’UN SİYAH PİRİNÇ SÜTÜNDE GELİŞME KİNETİĞİ VE CANLILIĞI

Serap COŞANSU AKDEMİR, Samin TOUPAL, Özge ASLAN

TÜRKİYE’DE NÜFUSUN YETERLİ VE DENGELİ BESLENMESİ AÇISINDAN HAYVANSAL GIDA ARZ VE TALEBİNİN DEĞERLENDİRİLMESİ

Betül GÜRER

LİTYUM KLORİT/DİMETİLASETAMİT ORTAMINDA NANOSELÜLOZUN ASETİK ANHİDRİT VE FARKLI YAĞ ASİTLERİ İLE ESTERİFİKASYONUNUN OPTİMİZASYONU

Özlem ERİNÇ, Hakan ERİNÇ, Behiç MERT, Ayşe ÖZBEY

KARABİBER VE SODYUM ASKORBATIN SUCUĞUN UÇUCU BİLEŞİKLERİ ÜZERİNE ETKİLERİ

Selen SALLAN, Güzin KABAN, Mükerrem KAYA

ZEYTİN (Olea europaea L.) YAPRAĞININ FONKSİYONEL ÖZELLİKLERİ VE GIDALARDA KULLANIM POTANSİYELİ

Mehmet Ali SALIK, Songül ÇAKMAKÇI

FARKLI PİŞİRME MATERYALLERİ İÇİNDE PİŞİRİLEN İSKORPİT BALIĞI (Scorpaena porcus, Linnaeus 1758) ETİNİN KALİTESİ

Bengunur ÇORAPCI

YUMURTA İKAMESİ OLARAK KULLANILAN ÇİYA VE KETEN TOHUMU JELİNİN PANKEK HAMURU REOLOJİSİ VE ÜRÜN ÖZELLİKLERİ ÜZERİNE ETKİSİNİN İNCELENMESİ

Selen ERKOÇ, İpek ÖZCAN, Esra ÖZYİĞİT, Seher KUMCUOĞLU, Şebnem TAVMAN

LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON

Hazer YÜKSEKDAĞ, Zehranur YUKSEKDAG

KİTOSAN BAZLI ETİL PİRÜVAT FİLMLERİN FİZİKOKİMYASAL, ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-QUORUM SENSİNG ÖZELLİKLERİNİN BELİRLENMESİ

Burcu KAYA, Nükhet Nilüfer ZORBA, Cengiz CANER

MİNERAL TUZ İKAME MADDELERİNİN AYRANIN FİZİKOKİMYASAL, MİKROBİYAL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ

Çağım AKBULUT ÇAKIR, Ayşe BOZKURT