Bitki Doku Kültürlerinde Sekonder Metabolit Sentezi

Bitki doku kültürlerinden elde edilen ikincil metabolitler, insan sağlığı açısından önemlidirler. Bu nedenle, son on yılda ikincil metabolitlerin sentezlenmesi ve fermentörlerde üretimi üzerindeki çalışmalar hız kazanmıştır. İkincil metabolitler biyoaktif özellikleri olan bileşenlerdir. Özellikle tıp ve eczacılık alanlarında kullanılırlar. Gıda endüstrisinde ise katkı maddesi, fonksiyonel gıda bileşeni veya besin takviyesi açısından önemlidirler. İkincil metabolitlerin bitkiler tarafından üretilmesi meteorolojik koşullara, coğrafi konuma ve yetiştirme koşullarına bağlıdır ve pek çok bitki ancak belirli mevsimlerde yetişip olgunlaşabilir. Bitki yerine bitki hücrelerinin uygun koşullarda biyoreaktörlerde üretilmesi bitkisel unsurların doğanın sunduğu parametrelerden bağımsız üretimini sağlar. Dolayısıyla, ikincil metabolitlerin tam bitkiden bağımsız üretimi piyasaya arzda süreklilik sağlar, üretim verimini artırır ve ikincil metabolitler belirli spesifikasyonlara sahip endüstriyel ürünler niteliğine kavuşur. Bitkilerin totipotensi özelliği, bir bitki hücresinden organizmanın üretilebilmesine olanak sağlar. Bitki doku kültürleri hayvan dokularıyla karşılaştırıldığında totipotensi özelliğinden dolayı hedef alınan metabolitler daha çok ve daha hızlı üretilebilirler. Ancak, bitki doku kültürlerinin ikincil metabolit sentezlediği mekanizmalar tamamen bilinmemektedir. İkincil metabolit üretimi ile ilgili bilimsel çalışmaların çoğu laboratuar ölçeği ile sınırlı kalmıştır. Biyoreaktörlerde bitki doku kültürlerinden ikincil metabolit üretimi tarıma dayalı endüstrinin katma değer açısından çok önemli bir unsuru olmaya adaydır. Burada, bu konuda bilimsel çalışma yapmayı hedefleyenler için bitki doku kültürlerinin gelişim ve ikincil metabolizmalarını etkileyen unsurlarla bitki doku hücrelerinde ikincil metabolizmayı etkileyen stres mekanizmaları ve stres sonucu bitki doku kültürünün uğradığı değişimler özetlenmiştir.

Secondary Metabolite Synthesis in Plant Tissue Cultures (Turkish with English Abstract)

Synthesis and manufacture of secondary metabolites have gained popularity due to their importance to human health. Secondary metabolites are known to have bioactive properties, and they are widely used in medical treatments, and thus are important in the pharmaceutical industry. Secondary metabolites are also used as food ingredients, functional food components and food additives. Plant tissue cultures allow manufacture of continuous, standardized production of secondary metabolites independent of seasonal variations, geographic position, atmospheric and soil growth conditions. Secondary metabolite production from plant tissues is faster and with higher yields compared to the animal tissues due to totipotency of plants which allows the plant cell to produce the organism itself. However, secondary metabolite syntheses mechanisms in plant tissue cultures are not well-understood, and in most cases, research on plant tissue cultures is limited to laboratory-scale in vitro studies. The present work is a review of the growth conditions, secondary metabolite biosynthesis, the stress mechanisms that induce secondary metabolite biosynthesis in plant tissue cultures, and the changes that occur in these cultures upon application of stress.

Kaynakça

Gözükırmızı N. 2010. Bitki Biyoteknolojisi. Gıda Biyoteknolojisi. Aran N (Bafl editör), Nobel Yayın Da¤ıtım, Ankara, Türkiye, s. 393-414.

Aran N (ed). 2010. Gıda Biyoteknolojisi. Nobel Yayın Da¤ıtım, Ankara, Türkiye, 485 p.

Taiz LE. 2006. Plant Physiology. Spektrum Akademischer Verlag, Berlin Heidelberg.

Zhong JJ. 2001. Biochemical Engineering of the Production of Plant-Specific Secondary Metabolites by Cell Suspension Cultures. In: Plant Cells. (Chief ed), Vol. 72, Springer -Berlin / Heidelberg, pp. 1-26.

Gueven A, Knorr D. 2011. Isoflavonoid production by soy plant callus suspension culture. J Food Eng, 103: 237-243.

Nunez-Palenius HG, Cantliffe DJ, Klee HH, Ochoa-Alejo N, Ramírez-Malagón R, and E. Pérez- Molphe. 2005. Methods in Plant Tissue Culture. In: Food Biotechnol, Shetty K (Chief ed), CRC Press, pp. 553-601.

Chwala H.S. 2002. Introduction to plant biotechnology. Second Edition. Enfield, NH : Science Publishers, UK, 538 pp.

Sökmen A. 2001. Sekonder Metabolit Üretimi. Bitki Biyoteknolojisi. Babao¤lu M, Gürel E, Özcan S (Editörler), Selçuk Üniversitesi Basımevi, Konya, Türkiye, s. 221-224.

Hermann M. 2010. Influence of pulsed electric fields on polyphenol production, peroxidase and polyphenol oxidase activity of grape cell culture (Vitis vinifera). Techical University of Berlin, Diplomarbeit, Berlin, Germany, 73p.

Vukovic R, Bauer N, Curkovic-Perica M. 2013. Genetic elicitation by inducible expression of cryptogein stimulates secretion of phenolics from Coleus blumei hairy roots. Plant Sci, 199-200; 18-28.

Malarz J, Stojakowska A, Szneler E, Kisiel W. 2013. A new neolignan glucoside from hairy roots of Cichorium intybus. Phytochemistry Lett 6: 59-61.

Luczak S, Forlani F, Papenbrock J. 2013. Desulfo-glucosinolate sulfotransferases isolated from several Arabidopsis thaliana ecotypes differ in their sequence and enzyme kinetics. Plant Physiol and Biochem 63: 15-23.

Imbert, F., 1998. Discovery of podophyllotoxins. Biochimie 80, 207-222.

Wang j, Man S, Gao W, Zhang L, Huang L. 2013. Cluster analysis of ginseng tissue cultures, dynamic change of growth, total saponins, specific oxygen uptake rate in bioreactor and immuno- regulative effect of ginseng adventitious root. Industrial Crops Prod, 41: 57-63.

Phulwaria M, Shekhawat NS, Rathore JS, Singh RP. 2013. An efficient in vitro regeneration and ex vitro rooting of Ceropegia bulbosa Roxb-A threatened and pharmaceutical important plant of Indian Thar Desert. Industrial Crops Prod, 42: 25-29.

Man S, Wang J, Gao W, Guo S, Li Y, Zhang L, Xiao P. 2013. Chemical analysis and anti-inflammatory comparison of the cell culture of Glycyrrhiza with its field cultivated variety. Food Chem, 136: 513-517.

Chen R, Liu X, Zou J, Yang L, Dai J. 2013. Qualitative and quantitative analysis of phenylpropanoids in cell culture, regenerated plantlets and herbs of Saussurea involucrata. J Pharm Biomed Anal, 74: 39-46.

Gonçalves S, Romano A. 2012. In vitro culture of lavenders (Lavandula spp.) and the production of secondary metabolites. Biotechnol Adv (Article in Press).

Yue X, Zhang W, Deng M. 2011. Hyper- production of 13C-labeled trans-resveratrol in Vitis vinifera suspension cell culture by elicitation and in situ adsorption. Biochem Eng J 53: 292-296.

Taha HS, Abd El-Kawy AM, Abd El-Kareem Fathalla M. 2012. A new approach for achievement of inulin accumulation in suspension cultures of Jerusalem artichoke (Helianthus tuberosus) using biotic elicitor. J Genet Eng Biotechn, 10: 33-38.

Skoric M, Todorovic S, Gligorijevic N, Jankovic R, Zivkovic S, Ristic M, Radulovic S. 2012. Cytotoxic activity of ethanol extracts of in vitro grown Cistus creticus subsp.creticus L. on human cancer cell lines. Industrial Crops Prod 38: 153-159.

Singh M, Chaturvedi R. 2012. Screening and quantification of an antiseptic alkylamide, spilanthol from in vitro cell and tissue cultures of Spilanthes acmella Murr. Industrial Crops Prod 36: 321-328.

Kusakari K, Yokoyama M, Inomata S, Gozu Y, Katagiri C, Sugimoto Y. 2012. Large-scale production of saikosaponins through root culturing of Bupleurum falcatum L. using modified airlift reactors. J Biosci Bioeng 113: 99-105.

Rao RS ve Ravishankar GA. 2002. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol Adv 20: 101-153.

Arnous A, Meyer SA. 2008. Comparison of methods for compositional characterization of grape (Vitis vinifera L.) and apple (Malus domestica) skins. Food Bioproducts Process 86: 79-86.

Obon JM, Diaz-Garcia MC, Castellar MR. 2011. Red fruit juice quality and authenticity control by HPLC. J Food Compos Anal 24: 760-771. 27. Zhong J-J, Yu J-T, Yoshida T. 1995. Recent advances in plant cell cultures in bioreactors. World J Microbiol Biotechnol 11: 461-467.

Chaidee A, Wongchai C, Pfeiffer W. 2008. Extracellular alkaline phosphatase is a sensitive marker for cellular stimulation and exocytosis in heterotroph cell cultures of Chenopodium rubrum. J Plant Physiol, 165: 1655-1666.

Yang L, Peng K, Zhao S, Chen L, Qiu F. 2013. Monoterpenoids from the fruit of Gardenia jasminoides Ellis (Rubiaceae). Biochem Syst Ecol 50: 435-437.

Taveira M, Ferreres F, Gil-Izquierdo A, Oliveira L, Valentão P, Andrade PB. 2012. Fast determination of bioactive compounds from Lycopersicon esculentum Mill. leaves. Food Chem 135: 748-755. 31. Cheng GG, Zhang Y, Cai XH, Bao MF, Gua J, Li Y, Liu N, Liu YP, Luo XD. 2013. Cincholenines A and B, two unprecedented quinoline alkaloids from Cinchona ledgeriana. Tetrahedron Letters 54: 4547-4550.

Krishnaiah D, Bono A, Sarbatly R, Anisuzzaman SM. 2013. Antioxidant activity and total phenolic content of an isolated Morinda citrifolia L. methanolic extract from Poly ethersulphone (PES) membrane separator. Journal of King Saud University - Engineering Sciences (Article in Press).

Han J, Weng X, Bi K. 2008. Antioxidants from a Chinese medicinal herb - Lithospermum erythrorhizon. Food Chem, 106: 2-10.

Domingues de Oliveiraa SO, Saydb RM, Balzonc TA, Scherwinski-Pereira JE. 2013. A new procedure for in vitro propagation of vanilla (Vanilla planifolia) using a double-phase culture system. Scienta Hortic, 161: 204-206.

Santhosha SG, Jamuna P, Prabhavathi SN. 2013. Bioactive components of garlic and their physiological role in health maintenance: A review. Food Biosci, 3: 59-74.

Russo M, di Sanzo R, Cefaly V, Carabetta S, Serra D, Fuda S. 2013. Non-destructive flavour evaluation of red onion (Allium cepa L.) Ecotypes: An electronic-nose-based approach. Food Chem 141: 896-899.

Si-bin G, Yu W, Xiao-qiong L, Kai-qiang L, Feng-kuan H, Cai-hong C, Guo-qing G. 2013. Development and Identification of Introgression Lines from Cross of Oryza sativa and Oryza minuta. Rice Sci, 20: 95-102.

Ballester AR, Lafuente MT, de Vos RCH, Bovy AG, Gonzalez-Candelas L. 2013. Citrus phenylpropanoids and defence against pathogens. Part I: Metabolic profiling in elicited fruits. Food Chem, 136: 178-185.

Arlorio M, Locatelli M, Travaglia F, Coisson JD, Del Grosso E, Minassi A, Appendino G, Martelli A. 2008. Roasting impact on the contents of clovamide (N-caffeoyl-L-DOPA) and the antioxidant activity of cocoa beans (Theobroma cacao L.). Food Chem 106: 967-975.

Romano D, Gondolfi R, Guglielmetti S and Molinari F. 2011. Enzymatic hydrolysis of capsaicins for the production of vanillylamine using ECB deacylase from Actinoplanes utahensis. Food Chem 124: 1096–1098.

Johnson TS, Ravishankar GA, Venkataraman LV. 1990. In vivo capsaicin production by immobilized cells and placental tissues of Capsicum annuum L. grown in liquid medium. Plant Sci; 70:223 -229.

Dey A, Kundu S, Bandyopadhyay A and Bhattacharjee A. 2013. Efficient micropropagation and chlorocholine chloride induced stevioside production of Stevia rebaudiana Bertoni. Comptes Rendus Biologies 336: 17-28.

Liao WC, Lin YH, Chang TM and Huang WY. 2012. Identification of two licorice species, Glycyrrhiza uralensis and Glycyrrhiza glabra, based on separation and identification of their bioactive components. Food Chem 132: 2188-2193 44. Picone D, Temussi PA. 2012. Dissimilar sweet proteins from plants: Oddities or normal components? Plant Sci; 195: 135-142.

Negi PS. 2012. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int J Food Microbiol 156: 7-17.

El-Beltagi HS, Osama K.A, El-Desouky W. 2011. Effect of low doses gamma-irradiation on oxidative stress and secondary metabolites production of rosemary (Rosmarinus officinalis L.) callus culture. Radiation Physics and Chem; 80: 968-976.

Teerarak M, Laosinwattana C, Charoenying P. 2010. Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. Bioresource Technol 101: 5677-5684.

Ernst D. Pimpinella anisum L. (Anise). 1989. Cell culture somatic embryogenesis and the production of anise oil. In: Biotechnology in agriculture and forestry, Bajaj YPS, (Editor). Vol. 1. Berlin: Springer, pp. 381.

Lichtenthaler HK. 1996. Vegetation Stress: an Introduction to the Stress Concept in Plants. J Plant Physiol, 148: 4-14.

Beck E, Lüttge U. 1990. Streß bei Pflanzen. Biologie in unserer Zeit, 20: 237-244.

Kaynak Göster

Bibtex @ { gida92919, journal = {Gıda}, issn = {1300-3070}, eissn = {1309-6273}, address = {}, publisher = {Gıda Teknolojisi Derneği}, year = {2014}, volume = {39}, pages = {299 - 306}, doi = {10.15237/gida.GD13060}, title = {Bitki Doku Kültürlerinde Sekonder Metabolit Sentezi}, key = {cite}, author = {Güven, Alper and Gürsul , İşıl} }
APA Güven, A , Gürsul , İ . (2014). Bitki Doku Kültürlerinde Sekonder Metabolit Sentezi . Gıda , 39 (5) , 299-306 . DOI: 10.15237/gida.GD13060
MLA Güven, A , Gürsul , İ . "Bitki Doku Kültürlerinde Sekonder Metabolit Sentezi" . Gıda 39 (2014 ): 299-306 <
Chicago Güven, A , Gürsul , İ . "Bitki Doku Kültürlerinde Sekonder Metabolit Sentezi". Gıda 39 (2014 ): 299-306
RIS TY - JOUR T1 - Bitki Doku Kültürlerinde Sekonder Metabolit Sentezi AU - Alper Güven , İşıl Gürsul  Y1 - 2014 PY - 2014 N1 - doi: 10.15237/gida.GD13060 DO - 10.15237/gida.GD13060 T2 - Gıda JF - Journal JO - JOR SP - 299 EP - 306 VL - 39 IS - 5 SN - 1300-3070-1309-6273 M3 - doi: 10.15237/gida.GD13060 UR - Y2 - 2020 ER -
EndNote %0 Gıda Bitki Doku Kültürlerinde Sekonder Metabolit Sentezi %A Alper Güven , İşıl Gürsul  %T Bitki Doku Kültürlerinde Sekonder Metabolit Sentezi %D 2014 %J Gıda %P 1300-3070-1309-6273 %V 39 %N 5 %R doi: 10.15237/gida.GD13060 %U 10.15237/gida.GD13060
ISNAD Güven, Alper , Gürsul , İşıl . "Bitki Doku Kültürlerinde Sekonder Metabolit Sentezi". Gıda 39 / 5 (Ekim 2014): 299-306 .
AMA Güven A , Gürsul  İ . Bitki Doku Kültürlerinde Sekonder Metabolit Sentezi. GIDA. 2014; 39(5): 299-306.
Vancouver Güven A , Gürsul  İ . Bitki Doku Kültürlerinde Sekonder Metabolit Sentezi. Gıda. 2014; 39(5): 299-306.