Moleküler Hareketlilik: Gıdaların Muhafazası ve İşlemesinde Yeni Bir Yaklaşım

Su aktivitesi kavramı, 1950’lerde gıdaların dayanıklılığının belirlenmesinde kullanılmış olsa da bazı kısıtlamalara sahiptir. Bu kısıtlamaların üstesinden gelebilmek amacıyla camsı geçiş kavramı önerilmiştir. Ancak günümüzde bu kavramın da tüm gıda ürünleri ve depolama koşullarında dayanıklılığın belirlenmesi için yeterli olmadığı belirtilmektedir. Yapılan araştırmalarda su aktivitesi ve camsı geçiş kavramını birlikte kullanarak bazı yaklaşımlar önerilmekte ve bu yaklaşımlar, camsı geçiş koşulları ile su miktarının su aktivitesinin bir fonksiyonu olarak çizildiği grafikler ve durum diyagramlarındaki makro ve mikro bölgelerden oluşan grafikler olarak karşımıza çıkmaktadır. Bu yaklaşımlara ek olarak; kullanılan engel teknolojilerini, gıdanın kalitesini etkileyen su miktarını ve dayanıklılığı tanımlamak için kritik sıcaklık terimi geliştirilmiş ve su hareketliliği kavramı ortaya atılmıştır. Bu özet çalışmasında su aktivitesi kavramı, camsı geçiş kavramı ve bunların birlikte kullanımı ile günümüzde yeni tanımlanan moleküler hareketlilik kavramının gıdaların dayanıklılığını tanımlamada nasıl kullanıldığı konuları üzerinde durulmuştur.

Molecular Mobility: A New Approach to Food Preservation and Processing (Turkish with English Abstract)

Although, water activity was used for determining food stability in 1950’s, it has some limitations. In order to overcome these limitations, glass transition concept was proposed. However, it was shown that this concept was also not enough to determine the stability for every food and storage conditions, as well. In some researches, combination of water activity and glass transition concepts were suggested. These concepts appear such graphs of glass transition and water content as a function of water activity and/or macro and micro regions in the state diagrams. In addition to these approaches, critical temperature concept was developed to determine the hurdle strategies, food quality, water content and stability. In this review, water activity concept, glass transition concept and combination of these concepts with how to use molecular mobility concept, which is a new approach to determine food stability, were explained.

___

  • Rahman MS. 2010. Food stability determination by macro–micro region concept in the state diagram and by defining a critical temperature. J Food Eng, 99, 402-416.
  • Champion D, Le Meste M, Simatos D. 2000. Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range. Trends Food Sci Tech, 11, 41-55.
  • Roudaut G, Simatos D, Champion D, Contreras- Lopez E, Le Meste M. 2004. Molecular mobility around the glass transition temperature: a mini review. Innov Food Sci Emerg, 5, 127-134.
  • Acevedo NC, Schebor C, Buera P. 2008. Non-enzymatic browning kinetics analysed through water–solids interactions and water mobility in dehydrated potato. Food Chem, 108 (3), 900-906. 5. Schmidt SJ. 2004. Water and solids mobility in foods. Adv Food Nutr Res, 48, 1-101.
  • Buitink J, Leprince O. 2004. Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology, 48, 215-228.
  • Slade L, Levine H. 1995. Glass transitions and water–food structure interactions. Adv Food Nutr Res, 38, 103-179.
  • McFetridge J, Rades T, Lim M. 2004. Influence of hydrogenated starch hydrolysates on the glass transition and crystallization of sugar alcohols. Food Res Int, 37, 409-415.
  • Rahman MS, Al-Zakwani I, Guizani N. 2005. Pore formation in apple during air drying as a function of temperature and pore size distribution. J Sci Food Agr, 85 (6), 979-989.
  • Rahman MS, Al-Amri OS, Al-Bulushi IM. 2002a. Pores and physico-chemical characteristics of dried tuna produced by different methods of drying. J Food Eng, 53, 301-313.
  • Bell LN, White KL. 2000. Thiamin stability in solids as affected by the glass transition. J Food Sci, 65 (3), 498-501.
  • Vasquez C, Diaz-Calderona P, Enrione J, Matiacevich S. 2013. State diagram, sorption isotherm and color of blueberries as a function of water content. Thermochim Acta, 570, 8-15.
  • Ostrowska-Ligeza E, Gorska A, Wirkowska M, Koczon P. 2012. An assessment of various powdered baby formulas by conventional methods (DSC) or FT-IR spectroscopy. J Therm Anal Calorim, 110, 465-471.
  • Xin Y, Zhang M, Adhikari B. 2013. Effect of trehalose and ultrasound-assisted osmotic dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. var. botrytis L.). J Food Eng, 119, 640-647.
  • Suresh S, Guizani N, Al-Ruzeiki M, Al-Hadhrami A, Al-Dohani H, Al-Kindi I, Rahman MS. 2013. Thermal characteristics, chemical composition and polyphenol contents of date-pits powder. J Food Eng, 119, 668–679.
  • Martin DR, Ablett S, Sutton M, Sahagian ME. 1999. Diffusion of aqueous sugar solutions as affected by locust bean gum studied by NMR. J Food Sci, 64, 46–49.
  • Fennema OR (ed). 1996. Food Chemistry. Marcel Dekker, Inc., New York, pp. 17-94.
  • Yoshioka S, Aso Y. 2007. Correlations between molecular mobility and chemical stability during storage of amorphous pharmaceuticals. J Pharm Sci, 96, 960-981.
  • Hill JJ, Shalaev EY, Zografi G. 2005. Thermodynamic and dynamic factors involved in the stability of native protein structure in amorphous solids in relation to levels of hydration. J Pharm Sci, 94, 1636-1667.
  • Pravinata LC, You Y, Ludescher RD. 2005. Erythrosin B Phosphorescence Monitors Molecular Mobility and Dynamic Site Heterogeneity in Amorphous Sucrose. Biophys J, 88, 3551-3561.
  • Shirke S, Ludescher RD. 2005. Molecular mobility and the glass transition in amorphous glucose, maltose, and maltotriose. Carbohydr Res, 340, 2654- 2660.
  • You YM, Ludescher RD. 2006. Phosphorescence of erythrosin B as a robust probe of molecular mobility in amorphous solid sucrose. Appl Spectrosc, 60, 813-819.
  • Nack TJ, Ludesche R. 2006. Molecular Mobility and Oxygen Permeability in Amorphous Bovine Serum Albumin Films. Food Biophys, 3 (1), 151-162. 27. Sundaresan KV, Ludescher RD. 2008. Molecular mobility and oxygen permeability in amorphous Beta-lactoglobulin films. Food Hydrocoll, 22 (3), 403-413.
  • Shelke K. 2006. Tiny, Invisible, Ingredients. Food Processing, 42-45.
  • Tiwari RS, Ludescher RD. 2010. Vanillin phosphorescence as a probe of molecular mobility in amorphous sucrose. J Fluoresc, 20 (1), 125-133.
  • Rahman MS. 2004. State diagram of date flesh using differential scanning calorimetry (DSC). Int J Food Prop, 7 (3), 407-428.
  • Ludescher RD, Shah NK, McCaul CP, Simon KV. 2001. Beyond Tg: optical luminescence measurements of molecular mobility in amorphous solid foods. Food Hydrocoll, 15, 331-339.
  • Huang Y, Davies E, Lillford P. 2011. Effect of Solutes and Matrix Structure on Water Mobility in Glycerol- Agar-Water Gel Systems: A Nuclear Magnetic Resonance Approach. J Agric Food Chem, 59, 4078-4087.
  • Picouet PA, Sala X, Garcia-Gil N, Nolis P, Colleo M, Parella T, Arnau J. 2012. High pressure processing of dry-cured ham: Ultrastructural and molecular changes affecting sodium and water Dynamics. Innovat Food Sci Emerg Tech, 16, 335-340.
  • Aschenbrenner M, Kulozik U, Först P. 2011. The role of the glassy state in production and storage of freeze-dried starter cultures. Procedia Food Sci, 1, 347-354.
  • Carini E, Curti E, Littardi P, Luzzini M, Vittadini E, 2013. Water dynamics of ready to eat shelf stable pasta meals during storage. Innovat Food Sci Emerg Tech, 17, 163-168.
  • Baranowska HM. 2011. Water Molecular Properties in Forcemeats and Finely Ground Sausages Containing Plant Fat. Food Biophy, 6, 133-137.
  • Li S, Dickinson LC, Chinachoti P. 1998. Mobility of ‘‘unfreezable" and ‘‘freezable" water in waxy corn starch by 2H and 1H NMR. J Agr Food Chem, 46, 62-71.
  • Hills BP, Pardoe K. 1995. Proton and deuterium NMR studies of the glassy transition in a 10% water–meltose solution. J Mol Liq, 63, 229-237.
  • Tanner SF, Hills BP, Packer R. 1991. Interactions of sorbed water with starch studied using proton nuclear magnetic resonance spectroscopy. J Chem Soc, Faraday Trans, 87, 2613-2621.
  • Cherian G, Chinachoti P. 1996. 2H and 17O nuclear magnetic resonance study of water in gluten in the glassy and rubbery state. Cereal Chem, 73, 618-624.
  • Perera DY. 2002. Effect of thermal and hygroscopic history on physical ageing of organic coatings. Prog Org Coat, 44 (1), 55-62.
  • Tiemblo P, Guzman J, Riande E, Mijangos C, Reinecke H. 2001. Effect of physical aging on the gas transport properties of PVC and PVC modified with pyridine groups. Polymer, 42 (11), 4817-4824. 43. Schoonman A, Ubbink J, Bisperink C, Le Meste M, Karel M. 2002. Solubility and diffusion of nitrogen in maltodextriny protein tablets. Biotechnol Prog, 18, 139-154.
  • Champion D, Hervet H, Blond G, Le Meste M, Simatos D. 1997. Translation diffusion in sucrose solutions in the vicinity of their glass transition. J Phys Chem B, 10, 10674-10679.