BAZI İÇECEKLERDE TİTRASYON ASİTLİĞİNİN TAYİNİ İÇİN ZOFENOPRİL KALSİYUMA DAYANAN pH ELEKTROT YAPIMI

Bu çalışmada, bazı içeceklerde titrasyon asitliğinin tayini için kullanılabilecek zofenopril kalsiyum’a (ZFNCa) dayanan yeni bir PVC membran pH elektrot geliştirilmiştir Elektrot, 20±1 °C’de, 1.7–9.5 pH aralığında, 44.1±1.7 mV/pH’lik bir eğim göstermektedir. Ayrıca, bu elektrodun, 15 s’lik cevap süresi ve en az 12 aylık ömürle, iyi bir tekrarlanabilirliğe ve yeniden üretilebilirliğe sahip olduğu gözlenmiştir. Aynı zamanda, çeşitli iyonlar varlığında H+ iyonuna karşı iyi bir seçicilik gösterdiği belirlenmiştir. Önerilen elektrot kullanılarak, bazı içeceklerdeki (portakal suyu, elma suyu, gazlı içecek, bira, şarap ve sirke) titrasyon asitliğinin tayininin yapılabileceği gösterilmiştir. Bulunan sonuçlar geleneksel cam pH elektrotla elde edilenlerle karşılaştırıldığında, %95 GS’de (güven seviyesi), aralarında anlamlı bir fark olmadığı belirlenmiştir. Sonuç olarak, ZFNCa’a dayanan bu elektrodun, içeceklerdeki titrasyon asitliği tayininde cam elektroda alternatif olarak başarıyla kullanılabildiği görülmüştür.

CONSTRUCTION OF A pH ELECTRODE BASED ON ZOFENOPRIL CALCIUM FOR THE DETERMINATION OF TITRATABLE ACIDITY IN SOME BEVERAGES

In this study, a new PVC membrane pH electrode based on zofenopril calcium (ZFNCa) available for the determination of titratable acidity in some beverages was developed. The electrode exhibited a slope of 44.1±1.7 mV/pH in the pH range 1.7–9.5 at 20±1 °C. Furthermore, it was observed that the electrode had good repeatability and reproducibility with a response time of 15 s and a lifetime of at least 12 months. Also, it was found to display good selectivity for H+ ions in the presence of various ions. The applicability of the proposed electrode for the determination of titratable acidity in some beverages (orange juice, apple juice, fizzy drink, beer, wine and vinegar) was illustrated. It was seen that there were no significant differences between the results obtained with the proposed electrode and the traditional glass pH electrode at the 95% CL (confidence level). As a consequence, it was seen that the electrode based on ZFNCa could be successfully used as an alternative for glass electrode to determine the titratable acidity in beverages. 

___

  • 1. Cemeroğlu B.S (ed). 2013. Gıda Analizleri. Bizim Grup Basımevi Ajans Tan. Org. Yay. Dağ.San. Tic. Ltd. Şti. Ankara, Türkiye, 475 s.
  • 2. Crespo G.A., Afshar M.G., Bakker E. 2012. Direct Detection of Acidity, Alkalinity, and pH with Membrane. Anal. Chem., 84, 10165-10169.
  • 3. Tayfur M (ed). 2014. Gıda Katkı Maddeleri. Detay Yayıncılık Ankara, Türkiye, 230 s.
  • 4. Ansari R., Arvand M., Heydari L. 2014. The behaviour of polyaniline-coated PVC membrane based on 7,16-didecyl-1, 4, 10, 13-tetraoxa-7, 16-diazacyclooctadecane for pH measurements in highly acidic media. J. Chem. Sci., 126, 41-48.
  • 5. Peng L.B., Heng L.Y., Hasbullah S.A., Ahmad M. 2007. A solid-state pH transducer fabricated from a self-plasticized methacrylic-acrylic membrane for potentiometric acetylcholine chloride biosensor. J. Anal. Chem., 62, 884-888.
  • 6. Kim B., Shim J., Chung K.C. 2011.Study on hydrogen ion-selective solid contact electrodes based on decamethylcyclopentasiloxane, Anal. Lett., 44, 2138-2149.
  • 7. Crespo G.A., Gugsa D., Macho S., Rius F. X. 2009. Solid-contact pH-selective electrode using multi-walled carbon nanotubes. Anal. Bioanal. Chem., 395, 2371-2376.
  • 8. Michalska A., Hulanicki A., Lewenstam A. 1994. All solid-state hydrogen ion-selective electrode based on a conducting poly(pyrrole) solid contact. Analyst, 119, 2417-2420.
  • 9. Faria R.C., Bulhões L.O.S. 1998. Hydrogen ion selective electrode based on poly(1-aminoanthracene) film. Anal. Chim. Acta, 377, 21-27.
  • 10. Zine N., Bausells J., Ivorra A., Aguiló J., Zabala M., Teixidor F., Masalles C., Viñas C., Errachid A. 2003. Hydrogen-selective microelectrodes based on silicon needles. Sensor Actuat B, 91, 76-82.
  • 11. Han W.S., Chung K.C., Kim M.H., Ko H.B., Lee Y.H., Hong T.K. 2004. A hydrogen ion-selective poly(aniline) solid contact electrode based on dibenzylpyrenemethylamine ionophore for highly acidic solutions, Anal. Sci., 20, 1419-1422.
  • 12. Han W.S., Park M.Y., Chung K.C., Cho K.C., Hong T.K. 2001. All solid state hydrogen ion selective electrode based on a tribenzylamine neutral carrier in a poly(vinyl chloride) membrane with a poly(aniline) solid contact. Electroanal., 13, 955-959.
  • 13. Han W.S., Park M.Y., Chung K.C., Cho K.C., Hong T.K., 2001. Potentiometric sensor for hydrogen ion based on N,N'-dialkylbenzylethylenediamine neutral carrier in a poly(vinyl chloride) membrane with polyaniline solid contact. Talanta, 54, 153-159.
  • 14. Alexander P.W., Dimitrakopoulos T., Hibbert D.B. 1997. Photo-cured ammonium and hydrogen ion selective coated-wire electrodes used simultaneously in a portable battery-powered flow injection analyzer. Electroanal., 9, 1331-1336.
  • 15. Ahn J.H., Kim J.Y., Seol M.L., Baek D.J., Guo Z., Kim C.H., Choi S.J., Choi Y.K. 2013. A pH sensor with a double-gate silicon nanowire field-effect transistor, Appl. Phys. Lett., 102, 1-5.
  • 16. Chien Y.S., Tsai W.L., Lee I.C., Chou J.C., Cheng H.C. 2012. A novel pH sensor of extended-gate field-effect transistors with laser-irradiated carbon-nanotube network, IEEE Electron Devise Lett., 33, 1622-1624.
  • 17. Kashif M., Ali M.E., Ali S.M.U., Hashim U., Hamid S.B.A. 2013. Impact of hydrogen concentrations on the impedance spectroscopic behavior of Pd-sensitized ZnO nanorods, Nanoscale Res. Lett., 8, 68-77.
  • 18. Zakharova G.S., Podval’naya N.V. 2013. Bifunctional potentiometric sensor based on MoO3 nanorods. J. Anal. Chem., 68, 50-56.
  • 19. Lutov V.M., Mikhelson K.N. 1994. A new pH sensor with a PVC membrane: analytical evaluation and mechanistic aspects. Sensor Actuat B, 18, 400-403.
  • 20. Arvand M., Ghaiuri K. 2009. Batch and flow measurement of hydrogen ions in highly acidic media using 2-(4-methoxy phenyl) 6-(4-nitrophenyl)-4-phenyl-1,3-diazabicyclo [3.1.0] hex-3-ene as an H+-selective ionophore. Talanta, 79, 863-870.
  • 21. Chojnacki J., Biernat J.F. 1990. Application of azoles as neutral carriers in liquid membrane ion-selective pH electrodes. J Electroanal Chem, 277, 159-164.
  • 22. Nurminen K., Outinen-Y L., Narkilahti S., Lekkala J. 2010. A capillary pH electrode for evaluating long term culturing of neural cell populations. Procedia Engineering, 5 544-547.
  • 23. Cho D.H., Chung K.C., Jeong S.S., Park M.Y. 2000. Potentiometric behavior of N,N,N',N'-tetrabenzylmethylenediamine-based hydrogen ion-selective electrodes. Talanta, 51, 761-767.
  • 24. Cho D.H., Chung K.C., Park M.Y. 1998. Hydrogen ion-selective membrane electrodes based on alkyldibenzylamines as neutral carriers, Talanta, 47, 815-821.
  • 25. Joung K.I., Yoon H.J., Nam H., Paeng K.J. 2001. Development of pH sensor based on aromatic polyurethane matrix. Microchem. J., 68, 115-120.
  • 26. Crespo G.A., Afshar M.G., Bakker E. 2012. Direct detection of acidity, alkalinity, and pH with membrane electrodes. Anal. Chem., 84, 10165-10169.
  • 27. Lindner E., Cosofret V.V, Kusy R.P., Buck R.P. 1993. Responses of H+ selective solvent polymeric membrane electrodes fabricated from modified PVC membranes. Talanta, 40, 957-967.
  • 28. Langmaier J., Lindner E. 2005. Detrimental changes in the composition of hydrogen ion-selective electrode and optode membranes. Anal. Chim. Acta, 543, 156-176.
  • 29. Kothur R.R., Hall J., Patel B.A., Leong C.L., Boutelle M.G., Cragg P.J. 2014. A low pH sensor from an esterified pillar[5]arene. Chem. Commun., 50, 852-854.
  • 30. Liu X.J., Peng B., Liu F., Qin Y. 2007. Potentiometric liquid membrane pH sensors based on calix[4]-aza-crowns. Sensor Actuat B, 125, 656-663.
  • 31. Kuruoğlu D., Canel E., Memon S., Yılmaz M., Kılıc E. 2003. Hydrogen ion-selective poly (vinyl chloride) membrane electrode based on calix[4]arene. Anal. Sci., 19, 217-221.
  • 32. Demirel, A., Doğan, A., Canel, E., Memon, S., Yılmaz, M., Kılıç, E. 2004. Hydrogen ion-selective poly(vinyl chloride) membrane electrode based on a p-tert-butylcalix[4]arene-oxacrown-4. Talanta, 62, 123-129.
  • 33. Kormalı Ertürün H. E., Demirel Özel A., Sayın S., Yılmaz M., Kılıç E. 2015. Development of a pH sensing membrane electrode based on a new calix[4]arene derivative. Talanta, 132, 669–675.
  • 34. Ping J., Wang Y., Wu J., Ying Y., Ji F. 2012. A novel pH sensing membrane based on an ionic liquid-polymer composite. Microchim. Acta, 176, 229-234.
  • 35. Ansari R., Arvand M., Heydari L. 2014. The behaviour of polyaniline-coated PVC membrane based on 7,16-didecyl-1, 4, 10, 13-tetraoxa-7, 16-diazacyclooctadecane for pH measurements in highly acidic media. J. Chem. Sci., 126, 41-48.
  • 36. Michalak, M., Kurel M.; Jedraszko J., Toczydlowska D., Wittstock G., Opallo M., Nogala W. 2015.Voltammetric pH Nanosensor. Anal. Chem., 87 (23), 11641-11645.
  • 37. Taşdemir, İ.H., Kılıç, E. 2014. Reduction Pathways of Zofenopril Based on Experimental and Computational Approach and its Voltammetric Determination. Int. J. Electrochem. Sci., 9, 1758 – 1770.
  • 38. Anon 2002. Meyve ve Sebze Ürünleri Titre Edilebilir Asitlik Tayini, TS 1125 ISO 750. Türk Standartları Enstitüsü, Ankara.
  • 39. Zolotov, Y. A. 1997. Macrocyclic Compounds in Analytical Chemistry. John Wiley and Sons Ltd., USA, 448s.
  • 40. Choi Y.W., Minoura N., Moon S.H. 2005. Potentiometric Cr(VI)-Selective Electrode Based on Novel Ionophore-Immobilized PVC Membranes. Talanta, 66, 1254-1263.
  • 41. Schaller U., Bakker E., Spichiger E., Pretsch E. 1994. Ionic additives for ion-selective electrodes based on electrically charged carriers. Anal. Chem., 66, 391-398.
  • 42. Eugster R., Gehrig P.M., Morf W.E., Spichiger U.E., Simon W. 1991. Selectivity-modifying influence of anionic sites in neutral carrier-based membrane electrodes. Anal. Chem., 63, 2285-2289.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR
Sayıdaki Diğer Makaleler

CONTENT OF PROTEIN AND ORTHO-DIHYDRIC PHENOL IN AGARICUS BISPORUS X25 CULTIVATED ON DECOMPOSED AGROSUBSTRATES

Mowafaq Mezban MUSLAT, Mustafa Nadhim OWAİD, Idham Ali ABED

GIDALARDA HİLE AMACIYLA KULLANILAN BAZI BİTKİ KAYNAKLI BİLEŞENLERİN GERÇEK ZAMANLI PZR İLE TESPİTİ

Zülal KESMEN, Mine E. BÜYÜKKİRAZ, Neslihan KAHRAMAN, Hasan YETİM

ÇEŞİTLİ TALAŞLARDA ÜRETİLEN PLEUROTUS OSTREATUS VE PLEUROTUS CITRINOPILEATUS MANTARLARININ TOPLAM FENOLİK, FLAVONOİD VE TANEN İÇERİKLERİ VE ANTİOKSİDAN ÖZELLİKLERİ

Sibel YILDIZ, Ayşenur YILMAZ, Zehra CAN, Ceyhun KILIÇ, Ümit Cafer YILDIZ

PÜSKÜRTMELİ KURUTMA İŞLEMİNİN MEYVE SUYU KONSANTRELERİNİN FENOLİK MADDE İÇERİĞİNE VE ANTİOKSİDAN AKTİVİTESİNE ETKİSİ

Aslı Can Karaca, Hakan Başkaya, Önder Güzel, M. Mehmet Ak

VALORIZATION OF OLIVE-OIL INDUSTRY SOLID WASTE: STATISTICAL OPTIMIZATION OF ALKALINE EXTRACTION CONDITIONS FOR LIGHT-COLOURED HEMICELLULOSES

Didem Sutay KOCABAŞ, Eren YURTDAŞ, Ayşe Nur DEMİR

TEKİRDAĞ'DA SATIŞA SUNULAN IHLAMUR (Tilia spp.) ve KUŞBURNU (Rosa canina) ÖRNEKLERİNDE AFLATOKSİNLERİN VARLIĞININ ARAŞTIRILMASI

Nuray Can CAN, Serap DURAKLI VELİOĞLU

FARKLI KOMPOSTLARDA ÜRETİLEN AGARICUS BISPORUS X25 MANTARLARININ PROTEİN VE ORTO-DIHIDRIK FENOL İÇERİKLERİ

Mustafa Nadhim Owaid, Mowafaq Mezban Muslat, Idham Ali Abed

TARIMDA KULLANILAN ATRAZİNİN GİDERİMİNDE RHIZOPUS ARRHIZUS KULLANIM POTANSİYELİNİN BELİRLENMESİ

Ülküye Dudu Gül, HÜLYA SİLAH

MERCANKÖŞK (OREGANUM HERACLEOTICUM L.) VE BAHÇE KEKİĞİ (THYMUS VULGARIS L.) UÇUCU YAĞI İÇEREN SOYA BAZLI YENİLEBİLİR FİLMLERİN PATOJEN BAKTERİLERE KARŞI ANTİMİKROBİYEL ETKİLERİ

Gökçe Polat Yemiş POLAT YEMİŞ, Zehra KARAGÖZ EMİROĞLU, Kezban CANDOĞAN

KEÇİBOYNUZU TOZU ÜRETİMİNDE KAVURMA PROSESİ SÜRESİNCE RENK DEĞİŞİMİ VE AĞIRLIK KAYBI

Hilal Şahin-nadeem, Ayhan Topuz, ASLI ARSLAN KULCAN, MEHMET TORUN, FERAMUZ ÖZDEMİR