Anabaena sp.'nin pigment içerikler üzerine glukozun etkisi

Gıda için doğal renklendiriciler, yenilenebilir kaynaklardan yapılmaktadırlar. Renklendiriciler genellikle mikroorganizmalardan ekstrakte edilmektedirler, ancak bitki materyali, böcek, algler, siyanobakteriler ve funguslar gibi diğer kaynaklar da kullanılmaktadır. Karbon ve azot siyanobakterilerde pigmentleri etkileyen en önemli çevresel faktörlerdendir. Glukoz, enerji ve metabolizma düzenleyici bir kaynak olmasının yanı sıra, hücrelerde ki klorofil-a, fikosiyanin, allofikosiyanin ve E-karoten gibi pigment içeriklerini de farklı olarak etkilemektedir. Mevcut araştırmada farklı glukoz konsantrasyonlarının (10- 320 mM) Anabaena sp.'nin klorofil-a, fikosiyanin, allofikosiyanin ve E-karoten içerikleri üzerine etkilerini araştırmayı amaçlamıştır. Maksimum pigment içerikleri 10 mM glukoz konsantrasyonunda saptanmıştır. Ancak, 40 mMdan yüksek glukoz konsantrasyonlarında, bu türün pigment içerikleri ciddi bir şekilde azaltılmıştır. Anabaena sp. GO10, 60 mM ve daha yüksek glukoz konsantrasyonları tarafından tamamen baskılanmıştır. Bu araştırmada, glukozun, pigment üretimi için karbon kaynağı olarak kullanıldığı gösterilmiştir. Günümüze kadar yapılan çalışmalarda, siyanobakterilerin pigmentleri üzerine glukozun etkisine yönelik çok az sayıda bilgi bulunmaktadır.

The effect of glucose on pigment contents of anabaena sp.

Natural colorants for food are made from renewable sources. Most often, the colorants are extracted from microorganisms, but other sources such as plant material, insects, algae, cyanobacteria and fungi are used as well. Carbon and nitrogen are the most significant environmental factors influencing the pigments in cyanobacteria. Glucose, a source of energy and a metabolism regulator, differently affected the pigment contents, chlorophyll-a, phycocyanin, allophycocyanin and E- caroten in the cells. The present study aimed to investigate the effects of various glucose concentrations (10-320 mM) on biomass, chlorophyll-a, phycocyanin, allophycocyanin and E- caroten, of Anabaena sp. The maximum pigment contents were estimated at 10 mM glucose concentration. But, in the high concentrations of glucose are more than 40 mM, biomasses and pigment contents of this strain were severely reduced. Anabaena sp. GO10 was completely supressed by 60 mM and higher glucose concentrations. In this study show that, glucose use as carbon source for pigment production. There has been little information published on glucose applications of Cyanobacteriae pigments.

___

  • Spears K. 1988. Developments in food colourings: the natural alternatives. Trends Biotechnol, 6, 283-288.
  • Griffiths JC. 2005. Coloring Food and beverages. Food Technol, 59 (5), 38-44.
  • Mortensen A. 2006. Carotenoids and other pigments as natural Colorants. Pure Appl Chem, 78 (8), 1477-1491.
  • Subhasree RS, Dinesh Babu P, Vidyalakshmi R, Chandra Mohan V. 2011. Effect of Carbon and Nitrogen Sources on Stimulation of Pigment Production by Monascus purpureus on Jackfruit Seeds. Int J Microbiol Res, 2 (2), 184-187.
  • Venil CK, Lakshmanaperumalsamy P. 2009. An Insightful Overview on Microbial Pigment, Prodigiosin. Electron J Biol, 5(3), 49-61.
  • Jozlova P, Martinkova L, Vesely D. 1994. Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Microbiol, 79, 609-616.
  • Mizukami H, Konoshima M, Tabata M. 1978. Variation in pigment production in Lithospermum erythrorhizon callus cultures. Phytochemistry, 17, 95-97.
  • Papageorgiou VP, Winkler A, Sagredos AN, Digenis GA. 1979. Studies on the relationship of structure to antimicrobial properties of naphthoquinones and other constituents of Alkanna tinctoria. Planta Med, 35, 56-60.
  • Cross BE, Edinberry MN. 1972. Pigments of Gnomonia erythrostoma. Part I. The structures of erythrostominone, deoxyerythrostominone, and deoxyerythrostominol. J Chem Soc (Perkin), I, 3, 380-390.
  • Ryu BH, Park BG, Chi YE, Lee JH. 1989. Production of purplish-red pigment in mixed culture of Streptomyces propurpuratus ATCC 21630 and Bacillus sp R-89. Korean J Appl Microbiol Bioeng, 17, 327-333.
  • Parisot D, Devys M, Barbier M. 1990. Naphthoquinone pigments related to fusarubin from the fungus Fusarium solani (Mart.) Sacc. Microbios, 64, 31- 47.
  • Yongsmith B, Krairak S, Bavavoda R. 1994. Production of yellow pigments in submerged culture of a mutant of Monascus sp. J Ferment Bioeng, 78, 223-228.
  • Kim CH, Kim SW, Hong SI. 1998. Production of red pigment by Serratia sp. KH-95 and its cultural properties. Korean J Biotechnol Bioeng, 13, 431-437.
  • Cho YJ, Park JP, Hwang HJ, Kim SW, Choi JW, Yun JW. 2002. Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett Appl Microbiol, 35, 195-202.
  • Dufossé L. 2009, Microbial Pigments. In: Encyclopedia of Microbiology, Schaechter M (chief ed),Volume 3, pp. 457-471.
  • Bridle P, Timberlake CF. 1997. Anthocyanins as natural food colours-selected aspects. Food Chem, 58(1-2), 103-109.
  • Chattopadhyay P, Chatterjee S, Sen SK. 2008. Biotechnological potential of natural food grade biocolorants. African J Biotechnol, 7 (17), 2972- 2985.
  • Fay P. 1983. The Blue Greens. In: The Institute of Biology's Studies in Biology, Arnold E (chief ed), London, pp. 490-830.
  • Fogg GE, Stewart WDP, Fay P, Walsby AE. 1973. Culture, nutrition and growth. In: The Blue Green Algae, Academic Press, London, New- York, pp 129-142.
  • Sekar S, Chandramohan M. 2008. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol, 20, 113-136.
  • Jespersen L, Stromdahl LD, Olsen K, Skibsted LH. 2005. Heat and light stability of three natural blue colorants for use in confectionery and beverages. European Food Res Technol, 220, 261-266.
  • Bhat VB, Madyastha KM. 2000. C-Phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun, 275, 20-25.
  • Romay CH, Gonzalez R, Ledon N, Remirez D, Rimbau V. 2003. Phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci, 4, 207-216.
  • Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F. 2004. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci, 55, 2353-2362.
  • Benemann JR. 1992. Microalgae aquaculture feeds. J Appl Phycol, 4, 233-245.
  • Raja R, Hemaiswarya S, Rengasamy R. 2007. Exploitation of Dunaliella for E- carotene production. Appl Microbiol Biotechnol, 74, 517-523.
  • Ninet L, Renaut J. 1979. Carotenoids. In: Microbial Technology, Pappler HJ (chief ed), Volume 1, Academic Press, New York, pp. 529- 544.
  • Goodwin TW. 1980. Fungi. In: The Biochemistry of the Carotenoids, Plants, Goodwin TW (chief ed), Volume 1, Chapman and Hall, London, pp. 257-290.
  • Johnson EA, Schroeder WA. 1995. Microbial Carotenoids. In: Advances Biochemical Engineering Biotechnology, Fiecher A (chief ed), Volume 53, Springer-Verlage, Heidelberg, pp. 119-178.
  • Oren A. 2005. Review: A Hundred Years of Dunaliella Research 1905-2005. Saline Systems, 1(2), 1-14.
  • Aksu Z, Eren AT. 2007. Production of Carotenoids by Isolated Yeast of Rhodotorula glutinis. Biochem Eng J, 35(2), 107-113.
  • Kunz B, Ober P. 1987. Monascus fermentate: a new dietetic raw material. Bioeng, 3, 18-26.
  • Danuri H. 2008. Optimizing Angkak pigments and lovastatin production by Monascus purpureus. Hayati J Biosci, 15(2), 61-66.
  • Castenholz RW. 1988. Culturing methods for cyanobacteria. Methods Enzymol, 167, 68-93.
  • Rippka R. 1988. Isolation and purification of cyanobacteria. Methods Enzymol, 167, 3-27.
  • Cappuccino JG, Sherman N. 2001. Microbiology A Laboratory Manual. Sixth Edition, Benjamin Cummings, S. Francisco, pp 119.
  • Porra RJ, Thompson WA, Kriedemann PE. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standarts by atomic absorption spectroscopy. Biochim Biophys Acta, 975, 384- 394.
  • Anonim 2002. Analysis of Beta-Carotene and Total Carotenoids from Spirulina. Spirulina Pacifica Technical Bulletin#003b. Cyanotech Corporation, 23 January 2002.
  • Boussiba S, Richmond AE. 1979. Isolation and characterization of phycocyanin from the blue-green alga Spirulina platensis. Arch Microbiol, 120, 155-159.
  • Singh RN. 1961. The role of blue-green algae in nitrogen economy of Indian Agriculture. Indian Council Agr Res, New Delhi, pp 175.
  • Stewart WDP. 1967. Transfer of biologically fixed nitrogen in sand dune slack region. Nature, 214, 603-604.
  • Henriksson E, Henriksson LE, DaSilva EJ. 1975. A comparison of nitrogen fixation by algae of temperate and tropical soils. In: Nitrogen fixation by free- living microorganisms, Stewart WDP (chief ed), Volume 6, Cambridge Univ. Press, pp. 36-49.
  • Gurpreet KC, Balmeet SG. 2011. Production and Characterization of Microbial Carotenoids as an Alternative to Synthetic Colors: a Review, Int J Food Properties, 14(11), 503-513.
  • Bar R, Rokem JS. 1990. Cyclodextrin-stimulated fermentation of prodigiosin by Serratia marcescens. Biotechnol Lett, 12, 447-448.
  • Sole M, Francia A, Rius N, Loren JG. 1997. The role of pH in the glucose effect on prodigiosin production by non-proliferating cells of Serratia marcescens. Lett Appl Microbiol, 25, 81-84.
  • Khanafari A, Khavarinejad D, Mashinchian A. 2010. Solar salt lake as natural environmental source for extraction halophilic pigments. Iranian J Microbiol, 2(2), 103-109.
  • Sunanda K, Uma K, Apparao A. 2009. Characterization of marine Streptomyces from Visakhapatnam coast. Drug Invention Today, 1(2), 78-80.
  • Chemeris YK, O’Jon H, Venediktov PS.1992. Inactivation of Photosystem II during Heterotrophic Growth of Chlorella Initiated by Glucose Metabolites. Sov Plant Physiol, 39, 421- 427.
  • . Schreiber U, Endo T, Mi HL, Asada K. 1995. Quenching Analysis of Chlorophyll Fluorescence by the Saturation Pulse Method: Particular Aspects Relating to the Study of Eukaryotic Algae and Cyanobacteria. Plant Cell Physiol, 36, 873- 882.
  • Oller AR. 2005. Media effects of sugars on pigmentation and antibiotic susceptibility in Serratia marcescens. Sci Technol, 2, 243-246.
  • Martin JF, Demain AL. 1980. Control of antibiotic biosynthesis. Microbiol Rev, 44, 230-251.
  • Gargallo D, Loren JG, Guinea J, Vinas M. 1987. Glucose-6-phosphate dehydrogenase alloenzymes and their relationship to pigmentation in Serratia marcescens. Appl Environ Microbiol, 53, 1983-1986
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR