Rheological and Sensory Properties of Sodium Reduced Ezogelin Soup with Potassium Chloride and L-Glutamic Acid

AbstractObjective: Today, the amount of salt that has been consumed by people is much higher than the value recommended by the World Health Organization (WHO). Excess sodium intake may cause many ailments, especially hypertension and cardiovascular diseases. Therefore, it is encouraged to perform salt formulation studies to reduce the sodium level of processed foods that lead to excessive sodium intake. In this study, rheological and sensory properties of ezogelin soup made using salt formulation containing NaCl, KCl and L-glutamic acid were investigated.Materials and Methods: The rheological properties of soups were measured using a rheometer. Flavor profile method was used to describe and quantify sensory characteristics of soup samples.Results: The rheological properties of ezogelin soups with different salt replacer formulations were analysed at a wide range of temperatures (25, 35, 45, 55 and 65°C). All ezogelin soups behaved as shear thinning (n<1) and exhibited entagled solution properties. The power law model was determined to be adequate (r2=0,937–0,998) to fit the flow curves of ezogelin soups. The viscosity of all soup samples showed a strong dependence on temperature and temperature dependency of rheological parameters followed the Arrhenius model (r2=0,931–0,987). The activation energy (Ea) values of ezogelin soups were found between 14,350 and 28,284 J/mol. Sensory analysis showed that 50% KCl addition increased bitterness and decreased saltiness of the soup. The salt formulation (50% NaCl, 40% KCl and 10% L-glutamic acid) seemed to be an ideal formulation to attain 50% sodium reduction in ezogelin soup without negatively affecting its palatability. Additionally, it was seen that L-glutamic acid addition caused a decrease in the pH of the ezogelin soup. Conclusion: Salt formulation containing 50% NaCI, 40% KCI and 10% L-glutamic acid could be used for 50% NaCI reduction in ezogelin soup.Öz Amaç: Günümüzde insanların tuz tüketim miktarı Dünya Sağlık Örgütü’nün önerdiği değerin çok üzerindedir. Fazla sodyum alımı başta hipertansiyon ve kalp-damar hastalıkları olmak üzere birçok rahatsızlığa neden olabilmektedir. Dolayısıyla, aşırı sodyum alımına neden olan işlenmiş gıdaların sodyum seviyesini azaltmak için tuz formülasyonu çalışmalarının yapılması teşvik edilmektedir. Bu çalışmada, NaCI, KCl ve L-glutamik asit içeren tuz formülasyonunu ezogelin çorbasında kullanmanın ürünün reolojik ve duyusal özellikleri üzerine etkisi incelenmiştir. Materyal ve Yöntem: Çorbaların reolojik özellikleri reometre kullanılarak ölçülmüştür. Çorba örneklerinin duyusal özelliklerini tanımlamak ve ölçmek için lezzet profili yöntemi kullanılmıştır. Bulgular: Bu çalışmada, farklı tuz ikame formülasyonları içeren ezogelin çorbalarının reolojik özellikleri geniş bir sıcaklık aralığında (25, 35, 45, 55 ve 65°C) analiz edilmiştir. Bütün ezogelin çorbalarının, kayma ile incelen (n<1) davranış sergilediği ve karışık (entagled) çözelti özellikleri sergilediği görülmüştür. Power-law modelinin ezogelin çorbalarının akış eğrilerine uygun olduğu tespit edilmiştir (r2=0,937-0,998). Tüm çorba örneklerinin viskozitesinin sıcaklığa kuvvetli bir şekilde bağlı olduğu görümüştür ve sıcaklık ile reolojik parametrelerin ilişkisi Arrhenius modelini takip etmiştir (r2=0,931-0,987). Ezogelin çorbalarının aktivasyon enerjisi (Ea) değerlerinin 14,350 ve 28,284 J/mol arasında değiştiği bulunmuştur. Duyusal analiz, %50 KCl ilavesinin çorbanın acılığını artırırken tuzluluğunu azalttığını göstermiştir. %50 NaCl, %40 KCl ve %10 L-glutamik asit içeren tuz formülasyonu, ezogelin çorbasının lezzetini olumsuz yönde etkilemeden %50 sodyum azaltımı elde etmek için ideal bir formülasyon gibi görünmektedir. Ayrıca, L-glutamik asit ilavesinin ezogelin çorbasının pH değerinde bir azalmaya neden olduğu görülmüştür. Sonuç: %50 NaCl, %40 KCl ve %10 L-glutamik asit içeren tuz formülasyonunun ezogelin çorbasının NaCl seviyesini %50 oranında azaltmak için kullanılabileceği görülmüştür.

___

  • Abdullah, N., Chin, N.L., Yusof, Y.A. and Talib, R.A., 2018. Modeling the Rheological Behavior of Thermosonic Extracted Guava, Pomelo, and Soursop Juice Concentrates at Different Concentration and Temperature Using a New Combination Model. Journal of Food Processing and Preservation, 42(2): e13517.
  • Adebowale, A.R. A. and Sanni, L.O., 2013. Effects of Solid Content and Temperature on Viscosity of Tapioca Meal. Journal of Food Science and Technology, 50(3): 573-578.
  • Ahmed, J., Ptaszek, P. and Basu, S., 2016. Advances in Food Rheology and its Applications. Woodhead Publishing.
  • Ainsworth, P. And Plunkett A., 2007. Reducing Salt in Snack Products, Reducing Salt in Foods: Practical strategies. Kilcast D, Angus F, editors. Cambridge, UK: Woodhead; 296–315.
  • Anonymous, 1985. Sensory analysis-Methodology-Flavour Profile Method. International Organization for Standardization: Geneva, Switzerland, 1-6.
  • Anonymous, 2000. Official Methods of Analysis, 17th Ed., Association of Official Analytical Chemists, Inc., Arlington, VA.
  • Anonymous, 2001. Voedingscentrum (The Netherlands Nutrition Centre), NEVO-tabel: Nederlands Voedingsstoffenbestand 2001/Stichting Nederlands
  • Voedingsstoffenbestand (Dutch Food Composition Table: Dutch Food Composition Database 2001/Dutch Food Composition Database Foundation). Den Haag: Voedingscentrum.
  • Anonymous, 2007. WHO Document Production Services: Geneva, Switzerland; 2007. Reducing Salt Intake in Populations Report of a WHO Forum and Technical Meeting.
  • Anonymous, 2009. Centers for Disease Control and Prevention (CDC), Application of Lower Sodium İntake Recommendations to Adults: United States, 1999-2006. MMWR Morb Mortal Wkly Rep.; 58(11): 281-283.
  • Anonymous, 2010. CASH, Action on Salt. http://www.actiononsalt.org.uk/news/surveys/2010/soup/ (Accessed 16.03.2019).
  • Anonymous, 2012. The World's Best Bowl Food: Where to Find it and how to Make it.
  • Anonymous, 2018. Salt, https://www.betterhealth.vic.gov.au/health/healthyliving/salt (Accessed 11.03.2019).
  • Anonymous, 2019. https://www.ceptesok.com/arama/ezogelin#/ (Accessed 11.03.2019).
  • Augusto, P.E.D., Soares, B.M.C., Chiu, M.C. and Gonçalves, L.A.G., 2012. Modelling the Effect of Temperature on the Lipid Solid Fat Content. Food Research International, 45(1): 132–135.
  • Bachmanov, A.A., Bosak, N.P., Glendinning, J.I., Inoue, M., Li, X., Manita, S. and Beauchamp, G.K., 2016. Genetics of Amino Acid Taste and Appetite. Advances in Nutrition, 7(4): 806S-822S.
  • Björn, A., de La Monja, P.S., Karlsson, A., Ejlertsson, J. and Svensson, B.H., 2012. Rheological Characterization. In Biogas. InTech.
  • Carlucci, A. and Monteleone, E., 2001. Statistical Validation of Sensory Data: a Study on Wine. Journal of the Science of Food and Agriculture, 81: 751–758.
  • Cepanec, K., Vugrinec, S., Cvetkovic, T. and Ranilovic, J., 2017. Potassium Chloride-Based Salt Substitutes: A Critical Review with a Focus on the Patent Literature. Comprehensive Reviews in Food Science and Food Safety,16(5), 881-894.
  • Chopra, J.G., 1974. Enrichment and fortification of foods in Latin America. American Journal of Public Health, 64(1): 19-26.
  • Cordain, L., Eaton, S.B., Sebastian, A., Mann, N., Lindeberg, S., Watkins, B.A. and Brand-Miller, J., 2005. Origins and Evolution of the Western diet: Health İmplications for the 21st century. The American Journal of Clinical Nutrition, 81(2): 341-354.
  • Çelik, I., Isik, F. and Yilmaz, Y., 2010. Chemical, Rheological and Sensory Properties of Tarhana with wheat Bran as a Functional Constituent. Akademik Gida, 8(3): 11-17.
  • Desmond, E., 2007. Reducing Salt in Meat and Poultry Products. In Reducing salt in foods. Woodhead Publishing, 233-255.
  • Dewan, J., 2013. It's Soup Season, so Make it thick, http://www.chicagotribune.com/dining/recipes/sc-food-0222-prep-thick-soups-20130227-story.html (Accessed 02.01.2019).
  • Egresi, I., 2016. Alternative Tourism in Turkey: Role, Potential Development and Sustainability (Vol. 121). Springer.
  • Erbas, M., Certel, M. and Uslu, M.K., 2005. Microbiological and Chemical Properties of Tarhana During Fermentation and Storage as Wet-Sensorial Properties of Tarhana soup. Lebensmittel Wissenschaft und-Technologie, 38(4): 409-416.
  • Erdem, Y., Arıcı, M., Altun, B., Turgan, C., Sindel, S., Erbay, B., Derici, U., Karatan, O., Hasanoğlu, E. and Çağlar, S., 2010. The relationship between Hypertension and Salt İntake in Turkish population: SALTURK study. Blood Pressure, 19(5): 313-8.
  • Gao, X., Yu, T., Zhang, Z. H., Xu, J. C. and Fu, X. T., 2011. Rheological and Sensory Properties of Four Kinds of Jams. Journal of Stored Products and Postharvest Research, 2(11): 227-234.
  • Gonçalves, C., Monteiro, S., Padrão, P., Rocha, A., Abreu, S., Pinho, O. and Moreira, P., 2014. Salt Reduction in Vegetable Soup does not Affect Saltiness İntensity and Liking in the Elderly and Children. Food & Nutrition Research, 58(1): 24825.
  • Gratao, A.C.A., Silveira Jr, V. and Telis-Romero, J., 2007. Laminar Flow of Soursop Juice Through Concentric Annuli: Friction Factors and Rheology. Journal of Food Engineering, 78(4): 1343-1354.
  • Grigelmo, M.N., Ibarz, A.R. and Martin O.B., 1999. Rheology of Peach Dietary Suspensions. Journal of Food Engineering, 39: 91-99.
  • Hassan, B.H. and Hobani, A.I., 1998. Flow Properties of Roselle (Hibiscus sabdariffa L.) Extract. Journal of Food Engineering 35: 459–470.
  • Heikal, Y.A. and Chhinnan, M.S., 1990. Rheological Characterization of Tomato Puree at Different Temperatures Using Using two Types of Viscometers. In: Spiss WEL, Schubert H (eds) Engineering and Food: Physical Properties and Process Control. Elsevier Science, London, pp 133–142.
  • Holdsworth, S.D., 1971. Applicability of Rheological Models to the İnterpretation of Flow and Processing Behaviour of Fluid Food Products. Journal of Texture Studies, 2(4): 393-418.
  • Horita, C.N., Morgano, M.A., Celeghini, R.M.S. and Pollonio, M.A.R., 2011. Physico-chemical and Sensory Properties of Reduced-Fat Mortadella Prepared with Blends of Calcium, Magnesium and Potassium Chloride as Partial Substitutes for Sodium Chloride. Meat Science, 89(4): 426-433.
  • Hundal, J. and Takhar, P.S., 2009. Dynamic Viscoelastic Properties and Glass Transition Behavior of Corn Kernels. International Journal of Food Properties, 12(2): 295-307.
  • Ibanoglu, S. and Ibanoglu, E., 1998. Rheological Characterization of some Traditional Turkish Soups. Journal of Food Engineering, 35: 251–256.
  • Ichikawa, T. and Shimomura, M., 2007. Effects of Sodium Chloride and Other Salts on the Properties of Diluted Egg White Sols and Gels. Food Science and Technology Research, 13(2): 173-177.
  • Jacobson, M.F., Havas, S. and McCarter, R., 2013. Changes in Sodium Levels in Processed and Restaurant Foods, 2005 to 2011. JAMA Internal Medicine, 173(14): 1285-1291.
  • Juszczak, L., Witczak, M., Fortuna, T. and Solarz, B., 2010. Effect of Temperature and Soluble Solids Content on the Viscosity of Beetroot (Beta vulgaris) Juice Concentrate. International Journal of Food Properties, 13(6): 1364-1372.
  • Katsiari, M.C., Voutsinas, L.P., Alichanidis, E. and Roussis, I.G., 1997. Reduction of Sodium Content in Feta Cheese by Partial Substitution of NaCl by KCl. International Dairy Journal, 7: 465–472.
  • Kim, J.W., Samant, S.S., Seo, Y. and Seo, H.S. 2015. Variation in Saltiness Perception of Soup with Respect to Soup Serving Temperature and Consumer Dietary Habits. Appetite, 84: 73-78.
  • Koca, A.F., Koca, I., Anil, M., Hasbay, I. and Yilmaz, V.A., 2015. Physical, Rheological and Sensory Properties of Tarhana Prepared with Two Wild Edible Plants (Trachystemon orientalis (L.) G. Don) and (Portulaca oleracea L.). Journal of Food Processing Technology, 6: 5.
  • Kremer, S., Mojet, J. and Shimojo, R., 2009. Salt Reduction in Foods Using Naturally Brewed Soy Sauce. Journal of Food Science, 74: 6.
  • Leong, J., Kasamatsu, C., Ong, E., Hoi, J. T. and Loong, M.N., 2016. A Study on Sensory Properties of Sodium Reduction and Replacement in Asian Food Using Difference‐from–Control Test. Food science & nutrition, 4(3): 469-478.
  • Maskan M. and Göǧüș, F., 2000. Effect of Sugar on the Rheological Properties of Sunflower Oil-Water Emulsions. Journal of Food Engineering, 43:173-177.
  • Mitchell, M., Brunton, N.P. and Wilkinson, M.G., 2011. Impact of Salt Reduction on the Instrumental and sensory flavor profile of vegetable soup. Food Research International, 44: 1036-1043.
  • Mueller, E., Koehler, P. and Scherf, K.A., 2016. Applicability of Salt Reduction Strategies in pizza Crust. Food Chemistry, 192: 1116-1123.
  • Nayik, G.A., Dar, B.N. and Nanda, V., 2018. Rheological Behavior of High Altitude Indian Honey Varieties as Affected by Temperature. Journal of the Saudi Society of Agricultural Sciences, 17(3): 323-329.
  • Niththiya, N.V., Subajini, M. and Srivijeindran, S., 2014. Formulation of Instant Soup Mix Powder Using Uncooked Palmyrah (Borassus flabellifer) Tuber Flour and Locally Available Vegetables. Jaffna University International Research Conference.
  • Ophardt, C.E., 2003. Characteristics and Properties of Amino Acids, http://chemistry.elmhurst.edu/vchembook/561aminostructure.html (Accessed 03.01.2019).
  • Pham, K.V., 2013. Go with the Flow: The Effect of Solute Concentration on Viscosity, http://cssf.usc.edu/History/2013/Projects/S0321.pdf (Accessed 03.03.2019).
  • Rao, M.A. and Anatheswaran, R.C. 1982. Rheology of Fluids in Food Processing. Food Technology, 36: 116- 126.
  • Roininen, K., Lähteenmäki, L. and Tuorilla, H., 1996. Effect of Umami Taste on Pleasantness of Low-Salt Soups during Repeated Testing. Physiology & Behavior, 60(3): 953-958.
  • Sahin, S. and Sumnu, S.G., 2006. Rheological Properties of Foods. In Physical Properties of Foods (pp. 39-105). Springer, New York, NY.
  • Sengul, S., Erdem, Y., Akpolat, T., Derici, U., Sindel, S., Karatan, O. and Erturk, S., 2013. Controlling Hypertension in Turkey: not a Hopeless Dream. Kidney International Supplements, 3(4): 326-331.
  • Sinopoli, D.A. and Lawless, H.T., 2012. Taste Properties of Potassium Chloride Alone and in Mixtures with Sodium Chloride Using a Check‐All‐That‐Apply Method. Journal of Food Science, 77(9).
  • Sopade, P.A. and Filibus, T.E., 1995. The İnfluence of Solid and Sugar Contents on Rheological Characteristics of Akamu, a Semi-Liquid Maize Food. Journal of Food Engineering, 24: 197-211.
  • Sopade, P.A., Kassum, A.L., and Adamu, D.J., 1993. Rheological Characterization of some Nigerian Traditional Soups. International Journal of Food Science & Technology, 28(6): 647-653.
  • Steffe, J.F., 1996. Rheological Methods in Food Processing Engineering (2nd ed.). Michigan, USA: Freeman Press.
  • Waimaleongora-Ek, P., 2006. Sensory Characteristics of Salt Substitute Containing L-arginine. (Unpublished master's thesis). Thammasat University, Tayland.
  • Webster, J.L., Dunford, E.K., Hawkes, C. and Neal, B.C., 2011. Salt Reduction İnitiatives Around the World. Journal of Hypertension, 29(6): 1043-1050.
  • Yang, Q., Liu, T., Kuklina, E.V., Flanders, W.D., Hong, Y., Gillespie, C. and Hu, F.B., 2011. Sodium and Potassium İntake and Mortality Among US adults: Prospective Data from the Third National Health and Nutrition Examination Survey. Archives of internal medicine, 171(13): 1183-1191.
  • Yilmaz, M.T., Sert, D. and Demir, M.K., 2010. Rheological Properties of Tarhana Soup Enriched with whey Concentrate as a Function of Concentration and Temperature. Journal of Texture Studies, 41(6): 863-879.