Chlorpyriphos-ethylin rat testis dokusunda in vivo lipoperoksidatif etkisi

Amaç: Chlorpyriphos-ethyl (CE) verilen rat testis dokularında CE'nin lipoperoksidatif etkisini araştıramak. Yöntem: Deney grupları şu şekilde organize edildi: Kontrol grubu (K) ve CE verilen grup (CE). CE grubuna 0. ve 21. Saatlerde oral olarak CE uygulanırken K grubuna serum fizyolojik uygulandı. CE uygulamasının 24. saatinde deney sonlandırıldı. Doku homojenatlarında tiobarbitürik asit reaktif substans (TBARS) ve antioksidan potansiyel (AOP) düzeyleri ile süperoksit dismutaz (SOD), glutatyon peroksidaz (GSH-Px) ve katalaz (CAT) aktiviteleri çalışıldı. Ayrıca doku örnekleri ışık mikroskobunda incelendi. Bulgular: TBARS CE grubunda K grubuna göre artarken AOP düşük bulundu. SOD, GSH-Px ve CAT aktivivitelerinde ise gruplar arası fark bulunmadı. Mikroskobik olarak CE grubunda K grubuna göre spermatik seri hücrelerinde azalmayla karakterize seminifer tubul dejenerasyon ve düzensizlikleri gözlendi. Sonuç: Bu sonuçlarla denebilirki, CE, nonenzimatik antioksidanlar üzerine etki ederek ratların testis doku hasarında işe karışıyor olabilir.

The in vivo lipoperoxidative effect of chlorpyriphos-ethyl on testis tissue of rats

Objective: To investigate the lipoperoxidative effect of chlorpyriphos-ethyl (CE) on testis tissues of rats. Methods: The experimental groups were as follows: Control group (K) and CE treated group (CE). CE was applied to the rats of CE group orally at the 0 th and 21 st hours, whereas phisiologic saline was applied to the rats of K group. The experiment was ended at the 24 th hours of CE administration. The levels of thiobarbituric acid reactive substances (TBARS), antioxidant potential (AOP), and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) were determined in tissue samples. Furthermore, tissue samples were examined by light microscope. Results: TBARS was found to increase in CE group compared to K group. Conversly, AOP was found to decrease in CE group compared to K group. There was no significant changes in SOD, GSH-Px and CAT activities between the groups. Microscopically, seminifer tubulus degenerations which is characterized by reduced spermatogenetic cells were observed in CE group compared to K group. Conclusion: These results suggested that CE may involve in tissue damage of rats by affecting on non-enzymatic antioxidants.

___

  • 1. Hunter DL. , Lassiter TL., Padilla S. Gestational exposure to chlorpyrifos :comparative distribution of trichloropyridinol in the fetus and dam. Toxicol Appl Pharmacol 1999;158:16-23.
  • 2. Li WF, Furlong CE, Costa LG. Paraoxonase protects against chlorpyrifos toxicity in mice. Toxicol Lett 1995;76:219-26.
  • 3. Chanda SM, Mortensen SR,Moser VC, Padilla S. Tissue-specific effects of chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats :an in vitro and in vivo comparison. Fundam Appl Toxicol 1997;38:148-57.
  • 4. Bigbee JW, Sharma KV, Gupta JJ, Dupree JL. Morfogenik role for acetylcholinesterase in axonal outgrowth during neural development. Environ Health Perspect 1999;1:81-7.
  • 5. Agrawal D, Sultana P, Gupta G.S.D. Oxidative damage and changes in the glutathione redox system in erythrocytes from rats treated with hexachlorocyclohexane Food Chem Toxicol 1991;29:459-62.
  • 6. Stephen B, Kyle L, Yong X, Cynthia A, Donald E, Earl F, James E. Role of oxidative stress in the mechanism of dieldrin's hepatotoxicity. Ann Clin Lab Sci 1997;27:196-208.
  • 7. Bagchi D, Bagchi M, Hassoun EA, Stohs SJ. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology 1995;104:129-40.
  • 8. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull 1993;49:479-80.
  • 9. Kiernan JA. Histological and histochemical methods, theory and practise. 2nd Ed. Oxford: Pergamon Press; 1990.
  • 10. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 1990;186:421-31.
  • 11. Durak I, Karabacak HI, Büyükkocak S, Çimen MYB, Kaçmaz M, Ömeroğlu E, Öztürk HS. Impaired antioxidant defence system in the kidney tissues from rabbits treated with cyclosporine. Nephron 1998;78:207-11.
  • 12. Lawry OH, Rosebrough NJ,Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-72.
  • 13. Paglia DE, Walentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967;70:158-69.
  • 14. Aebi H, Catalase in vitro. Methods Enzymol 1984;105:121-26.
  • 15. Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J. The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 1998;1:289 -95.
  • 16. Steevens JA, Benson WH. Toxicological interactions of chlorpyrifos and methyl mercury in the amphipod, Hyalella azteca. Toxicol Sci 1999;52:168-77.
  • 17. Lodowici M, Aiolli S, Monserrat C, Dolara P, Medica A, Symlicio P. Effect of a mixture of 15 commonly used pesticides on DNA levels of 8-hydroxy-2-deoxyguanosine and xenobiotic metabolizing enzymes in rat liver. J Environ Pathol Toxicol Oncol 1994;13:163-8.
  • 18. Gupta J, Datta C. Effect of malathion on antioxidant defence system in human fetus-An in vitro study. Ind J Exp Biol 1992;352-4.
  • 19. Datta C, Gupta J, Sarkar A, Sengupta D. Effects of organophosphorus insecticide phosphomidon on antioxidant defence components of human erythrocyte and plasma. Ind J Exp Biol 1992;30:65-7.
  • 20. Dwivedi PD, Mukul D, Khanna SK. Role of cytochrome p-450 in quinalphos toxicity :Effect on hepatic and brain antioksidant enzymes in rats. Food Chem Toxicol 1998;36:437-44.
  • 21. Breslin WJ, Liberacki AB, Dittenber DA, Quast JF. Evaluation of the developmental and reproductive toxicity of chlorpyrifos in the rat. Fundam Appl Toxicol 1996;29:119-30.
  • 22. Lassiter TL, Padilla S, Mortensen SR, Chanda SM, Moser VC, Barone S Jr. Gestational exposure to chlorpyrifos: Apparent protection of the fetus? Toxicol Appl Pharmacol 1998;152:56-65.
  • 23. Prasanta KM, Anand K. Dimethoate inhibits extrathyroidal 5' - monodeiodination of thyroxine to 3,3', 5- triiodothyronine in mice: The possible involvement of the lipid peroxidative process. Toxicol Lett 1997;91:1-6.