Astrand-Rhyming nomogramının ve Fox eşitliğinin değerlendirilmesi: Anaerobik eşikle ilişkiler

Amaç: Astrand-Rhyming nomogramı ve Fox eşitliğinin geçerliliğini değerlendirmek ve bu yöntemlerin anaerobik eşik tahmini için kullanılıp kullanılamayacağını belirlemek. Yöntem: 15 sedanter, 7 antrenmanlı genç erkeğe bisiklet ergometresinde maksimal egzersiz testi uygulandı. Başlangıç yükü 60-100 W idi ve yük, tükenmeye kadar dakikada bir 10 W artırıldı. VO2max, üç farklı ventilatuvar eşik ve kan birikiminin başlangıç noktası hesaplandı. VO2max, 6 dakika süreyle uygulanan önceden belirlenmiş bir yükten ve testin sonundaki kalp hızından (Astrand-Rhyming nomogramı) ve 150 W yükteki bir bisiklet egzersizinin 5. dakikasında kaydedilen yükten (Fox eşitliği) tahmin edildi. Bulgular: Sedanterlerde doğrudan ölçülen VO2max, Astrand-Rhyming nomogramı ile ve Fox eşitliğiyle tahmin edilen VO2max ile ilişkiliydi. Anaerobik eşikler Fox eşitliğiyle tahmin edilen VO2max’la doğrudan ölçülen VO2max’a göre genellikle daha fazla ilişkiliydi. Sonuç: Ölçülen VO2max, Astrand-Rhyming nomogramıyla ve Fox eşitliğiyle tahmin edilen VO2max ile ilişkili olmadığı için VO2max’ın sporcularda indirekt yolla ölçülmemesi gerektiği sonucuna varıldı. Anaerobik eşik parametreleri ile daha fazla ilişkili olduğundan, anaerobik eşik tahmininde Fox eşitliğini kullanmanın daha uygun olacağını düşünüyoruz.

The evaluation of Astrand-Rhyming nomogram and Fox equation: Relations with anaerobic threshold

Objective: The aim was to evaluate the validity of Astrand-Rhyming nomogram and Fox equation and to determine if these methods could be used for the estimation of anaerobic threshold. Methods: A maximal cycle exercise test was applied to 15 sedentary, 7 trained young males. Initial load was 60-100 W and increased 10 W per minute until exhaustion. VO2max, three different ventilatory thresholds and the onset of blood lactate accumulation were calculated. VO2max was estimated from a pre-determined load applied for 6 minutes and heart rate at the end of the test (Astrand-Rhyming nomogram) and from the heart rate recorded during 5th minute of cycle exercise at 150 W (Fox equation). Results: In the sedentaries, VO2max measured directly was significantly correlated with VO2max estimated by Astrand-Rhyming nomogram and by Fox equation. Anaerobic thresholds were generally more correlated with VO2max estimated by Fox equation than with VO2max measured directly. Conclusion: As measured VO2max is not correlated with VO2max estimated by Astrand-Rhyming nomogram and by Fox equation, it is concluded that VO2max should not be measured indirectly in the athletes. Since more correlated with anaerobic threshold parameters, we think that using Fox equation might be more appropriate in the prediction of anaerobic threshold.

___

  • 1. Macsween A. The reliability and validity of the Astrand nomogram and linear extrapolation for deriving VO2max from maximal exercise data. J Sports Med Physical Fitness 2001;41:312-7.
  • 2. McArdle WD, Katch PI, Katch VI. “Exercise physiology: Energy, nutrition, and human performance”. 4th ed. USA: Williams & Wilkins; 1996.
  • 3. Astrand PO. Physiological evaluation of an exercise test. Bibl Cardiol 1977;36:3-6.
  • 4. Astrand PO, Rhyming, IA. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. J Appl Physiol 1954;7:218-21.
  • 5. Legge BJ, Banister EW. The Astrand-Rhyming nomogram revisited. J Appl Physiol 1986;61:1203-9.
  • 6. Fox EL. A simple, accurate technique for predicting maximal aerobic power. J Appl Physiol 1973;35:914-6.
  • 7. Fox EL, Bowers RW, Foss ML. “The physiological basis of physical education and athletics”. 4th ed., USA; Saunders College Publishing; 1988.
  • 8. Wasserman K, Mcllroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 1964;14:844-52.
  • 9. Bishop D, Jenkins DG, Mackinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc 1998;30:1270-5.
  • 10. Washington RL. Cardiorespiratory testing: Anaerobic threshold/respiratory threshold. Pediatr Cardiol 1999;20:12-5.
  • 11. Cheng B, Kuipers H, Snyder, AC, Keizer HA, Jeukendrup A, Hesselink M. A new approach for the determination of ventilatory and lactate threshold. Int J Sports Med 1992;13:518-22.
  • 12. Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the 4 mmol/l lactate threshold. Int J Sports Med 1985;6:117-30.
  • 13. Kinderman W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 1979;42:25-34.
  • 14. Astrand PO. Quantification of exercise capability and evaluation of physical capacity in man. Prog Cardiovasc Dis 1976;19:51-67.
  • 15. Shephard RJ. Tests of maximum oxygen intake: A critical review. Sports Med 1984;1:99-124.
  • 16. Shephard RJ. “Exercise physiology”. Toronto: B.C. Decker Inc; 1987.
  • 17. Keller A, Hellesnes J, Brox JI. Reliability of the isokinetic trunk extensor test, Biering-Sorensen test, and Astrand bicycle test: Assessment of intraclass correlation coefficient and critical difference in patients with chronic low back pain and healthy individuals. Spine 2001;26:771-7.
  • 18. Astrand PO, Rodahl K, Dahl HA, Stromme SB. Textbook of work physiology: Physiological bases of exercise. 4th ed. Canada; Human Kinetics; 2003.
  • 19. Buono MJ, Roby JJ, Micale FG, Sallis JF, Shepard WE. Validity and reliability of predicting maximum oxygen uptake via field tests in children and adolescents. Pediatr Exerc Sci 1991;3:250-5.
  • 20. Burke EM. Validity of selected laboratory and field tests of physical working capacity. Res Quar 1976;47:95-104.
  • 21. Zwiren LD, Freedson PS, Ward A, Wilke S, Rippe JM. Estimation of VO2max: A comparative analysis of five exercise tests. Res Quar 1991;62:73-8.