Astım ve lökotrienler

Amaç: Geçtiğimiz on yılda, astım patogenezi hakkındaki temel kavramlar özellikle hastalığın karakteristik bir özelliği olan remodelling ve havayolu inflamasyonu konularında önemli bir şekilde değişmiştir. Bu yazı, astım patogenezinde lökotrienler üzerine yoğunlaşan bir derlemedir. Ana bulgular: Astımlılarda hava yolu anormalliklerinin gelişiminde hücresel mediatörlerin oluşumu ve salınımı bildirilmiş ve gösterilmiştir. Lipit mediatörler, lökotrienler, allerjenle karşılaştıktan dakikalar sonra üretilir. Araşidonik asit metabolizmasında sikloksijenaz yolu ile PGD2, PGF2a ve tromboksan içeren prostaglandinler oluşur, bunların tümü bronkokonstriksiyon ile ilişkilidir. Lipooksijenaz enzim yolu sistenil lökotrienlerin (LTC4, LTD4 ve LTE4) ve LTB4’ün üretimini sağlar. LTB4, alveoler makrofajlar ve nötrofillerde üretilen majör lipooksijenaz ürünüdür. Sistenil lökotrienler, bronş düz kasında kasılmaya sekresyonlarda artışa ve mikrovasküler dolaşımda dışarı plazma sızmasına neden olur. In vivo bu durum hava yolu mukus sekresyonunda artışa ve bronş aşırı duyarlılığına sebep olur. Son olarak çalışmalar, LTE4 inhalasyonunun hava yoluna, eozinofil toplanmasına, dolayısıyla eozinofilik enflamasyona katkısı olduğunu düşündürmektedir. Sonuç: Astımın değişik varyasyonları ve kronik persistan astımda lökotrienlerin katkısı hakkındaki klinik kanıtlar 5-lipoxygenase inhibitörleri ve LTD4 reseptör antagonistleri ile çalışmalardan elde edilen sonuçlardır ve astım oluşumu üzerinde etkinlikleri gösterilmiştir.
Anahtar Kelimeler:

Lökotrienler, Astım, Enflamasyon

The leukotrienes and asthma

Objective: Concepts about asthma pathogenesis have changed dramatically in the past decade with a new focus on airway inflammation and remodeling as characteristic features of the disease and fundamental links to its pathogenesis. These review focuses on the leukotrienes in asthma pathogenesis. Main findings: The development of airway abnormalities in asthma is dictated and directed by the release and generation of cell- derived mediators. The lipid mediators, leukotriens, are produced within minutes of an allergen challenge. Arachidonic acid metabolism via the cyclooxygenase pathway produces prostaglandins, including PGD2, PGF2a and tromboxane, all of which have bronchoconstrictor activity. Lipoxygenase enzyme pathway products include the leukotrienes, including LTB4, as well as cystenil leukotrienes, LTC4, LTD4 and LTE4. LTB4 is a major lipooxygenase product of the alveolar macrophages and neutrophils. The cysteinyl leukotrienes, all contract airway smooth muscle and increase glandular secretion and initiate microvascular plasma leak. In vivo, these compounds increase airway mucus production and cause increased airway hyperresponsiveness in asthmatic subjects compared with normal controls. Finally, preliminary data suggest that inhaled LTE4 can attract eosinophils to the airway, thus perpetuating the development of eosinophilic inflammation. Conclusion: Clinical evidence for the contribution of leukotrienes to asthma is further derived from studies with 5-lipoxygenase inhibitors and LTD4 receptor antagonists, which show effectiveness in various models of asthma and chronic persistent disease.

___

  • 1. O’Byrne PM. Leukotrienes in the pathogenesis of asthma. Chest 1997;111:27S-34S.
  • 2. Chanarin N, Johnston SL. Leukotrienes as a target in asthma therapy. Drug 1994;47:12-24.
  • 3. Mungan D. Astma tedavisinde lökotrien sentez inhibitörleri ve reseptör antagonistleri. Tüberküloz Toraks Derg 1999;47(ek 1):5-15.
  • 4. Mayatepek E, Hoffmann EF. Leukotrienes: Biosynthesis, metabolism, and pathophysiologic significance. Ped Res 1995;37:1-9.
  • 5. Claesson HE, Dahlen SE. Asthma and leukotrienes: antileukotrienes as novel anti-asthmatic drugs. J Intern Med 1999;245:205-27.
  • 6. Chung KF. Leukotriene receptor antagonists and biosynthesis inhibitors: potential breakthrough in asthma therapy. Eur Respir J 1995;8:1203-13.
  • 7. Ford-Hutchinson AW, Jakobson PJ. Mechanisms for production and inhibition of leukotriene biosynthesis. In: Holgate SH, Dahlen SE editors. SRS-A to Leukotrienes. Cornwall, Blackwell-Science, 1997.p.139-51.
  • 8. Henderson WR Jr. Role of leukotrienes in asthma. Ann Allergy 1994;72:272-8.
  • 9. Dahlen SE. Leukotrienes. In: Holgate St, Busse WW, editors. Inflammatory mechanism in asthma. NewYork, Marcel-Deccer Inc 1998.p. 679-733.
  • 10. Larsen JS, Jackson SK. Antileukotriene therapy for asthma. Am J Health Syst Pharm 1996;53:2821-30.
  • 11. Holgate ST, Bradding P, Sampson AP. Leukotriene receptor antagonists and synthesis inhibitors: New direction in asthma therapy. J Allergy Clin Immunol 1996;98:1-13.
  • 12. Drazen JM. Effects of cysteinil leukotrienes on human airways. In: Holgate SH, Dahlen SE, editors. SRS-A to Leukotrienes. Cornwall, Blackwell-Science 1997.p. 189-201.
  • 13. Churg KF, Holgate ST. Leukotrienes: Why are they important mediators in asthma. Eur Respir Rev 1997;7:259-63.
  • 14. Hay DW, Torphy TJ, Undem BJ. Cysteinyl leukotrienes in asthma: old mediators up to new tricks. Trends Pharmacol Sci 1995;16:304-9.
  • 15. Dahlen SE. Leukotriene receptors and their antagonists. In: Holgate SH, Dahlen SE, editors. SRS-A to Leukotrienes. Cornwall, Blackwell-Science, 1997. p.155-69.
  • 16. Toraks Derneği. Ulusal Astım Tanı ve Tedavi Rehberi. Toraks Derg 2000;ek 1:4.
  • 17. Global Initiative for Asthma. Global strategy for asthma management and prevention. WHO/NHLBI workshop report. National Institutes of Health, Bethesta, MD publ. No. 95-3659, 1995.
  • 18. National asthma education and prevention programme. Expert panel report II: Guidelines for the diagnosis and management of asthma. National Institutes of Health Publ. 1992, No. 97-4051.
  • 19. Fabbri LM, Sterkk LM. Rationale for a new approach in asthma treatment. Eur Respir Rev 1997;7:253-8.
  • 20. Meltzer EO. Role for cysteinyl leukotriene receptor antagonist therapy in asthma and their potential role in allergic rhinitis based on the concept of “one linked airway disease”. Ann Allergy Asthma Immunol 2000;84:176-87.
  • 21. Jain P, Golish JA. Clinical management of asthma in the 1990s. Current therapy and new directions. Drugs 1996;52(suppl 6):1-11.
  • 22. Wenzel SE. Efficacy versus effectiveness: Leukotriene receptor antagonists or inhaled corticosteroids. Eur Respir Rev 2001;11:38-40.
  • 23. O’Shaughnessy KM, Wellings R, Gillies B, Fuller RW. Differential effects of fluticasone propionate on allergen-evoked bronchoconstriction and increased urinary leukotriene E4 excretion. Am Rev Respir Dis 1993;147:1472-6.
  • 24. Dworski R, Fitzgerald GA, Oates JA, Sheller JR. Effect of oral prednisone on airway inflammatory mediators in atopic asthma. Am J Respir Crit Care Med 1994;149:953-9.
  • 25. Diamant Z, Lamers JJ, Sterk PJ. Leukotriene receptor antagonists and biosynthesis inhibitors in asthma. Clin Immunother 1994;2:220-32.
  • 26. Horwitz RJ, McGill KA, Busse WW. The role of leukotriene modifiers in the treatment of asthma. Am J Respir Crit Care Med 1998;157:1363-71.
  • 27. Hay DW. Pharmacology of leukotriene receptor antagonists. More than inhibitors of bronchoconstriction. Chest 1997;111(suppl 2):35S-45S.
  • 28. Dahlen SE. New antimediator drug treatments: What use might they be? Eur Respir Rev 1998;8:184-9.
  • 29. Haahtela T, Jarvinen M, Kava T, Kiviranta K, Koskinen S, Lehtonen K, et al. Effects of reducing or discontinuing inhaled budesonide in patients with mild asthma. N Engl J Med 1994;331:700-5.
  • 30. Barnes PJ, Pedersen S. Busse WW. Efficacy and safety of inhaled corticosteroids: New developments. Am J Respir Crit Care Med. 1998;157:S1-53.
  • 31. O’Byrne PM, Pedersen S. Measuring efficacy and safety of different inhaled corticosteroid preparations. J Allergy Clin Immunol 1998;102:879-86.
  • 32. Barnes PJ. Inhaled glucocorticoids for asthma. N Eng Med J 1995;332:868-75.
  • 33. Djukanovic R, Homeyard S, Gratziou C, Madden J, Walls A, Montefort S, et al. The effect of treatment with oral corticosteroids on asthma symptoms and airway inflammation. Am J Respir Crit Care Med 1997;155:826-32.
  • 34. Schwiebert LM, Beck LA, Stellato C, Bickel CA, Bochner BS, Schleimer RP, et al. Glucocorticosteroid inhibition of cytokine production: relevance to antiallergic actions. J Allergy Clin Immunol 1996;97:143-52.
  • 35. Corrigan CJ, Hamid Q, North J, Barkans J, Moqbel R, Durham S, et al. Peripheral blood CD4 but not CD8 t-lymphocytes in patients with exacerbation of asthma trancribe and translate messenger RNA encoding cytokines which prolong eosinophil survival in the contex of a Th2-type pattern: effect of glucocorticoid therapy. Am J Respir Cell Mol Biol 1995;12:567-78.
  • 36. Burke C, Power CK, Norris A, Condez A, Schmekel B, Poulter LW, et al. Lung function and immunopathological changes after inhaled corticosteroid therapy in asthma. Eur Respir J 1992;5:73-9.
  • 37. Djukanovic R, Wilson JW, Britten KM, Wilson SJ, Walls AF, Roche WR, et al. Effect of an inhaled corticosteroid on airway inflammation and symptoms in asthma. Am Rev Respir Dis 1992;145:669-74.
  • 38. Duddridge M, Ward C, Hendrick DJ, Walters EH. Changes in bronchoalveolar lavage inflammatory cells in asthmatic patients treated with high dose inhaled beclomethasone dipropionate. Eur Respir J 1993;6:489-97.
  • 39. Sont J, van Krieken J, Evertse C, Evertse CE, Hooijer R, Willems LN., et al. Relationship between the inflammatory infiltrate in bronchial biopsy specimens and clinical severity of asthma in patients with treated inhaled steroids. Thorax 1996;51:496-502.
  • 40. Kharitonov SA, Yates DH, Barnes PJ. Inhaled glucocorticosteroids decrease nitric oxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med 1996;153:454-7.
  • 41. Bentley AM, Hamid Q, Robinson DS, Schotman E, Meng Q, Assoufi B, et al. Prednisolone treatment in asthma. Reduction of in the number of eosinophils, T cells, tryptase-only positive mast cells, and modulation of IL-4, IL-5 and interferon-gamma cytokine gene expression within bronchial mucosa. Am J Respir Crit Care Med 1996;153:551-6.
  • 42. Robinson DS, Assoufi B, Durham SR, Kay AB. Eosinophil cationic protein (ECP) and eosinophil protein X (EPX) concentration in serum and bronchial lavage fluid in asthma: Effect of prednisolone treatment. Clin Exp Allergy 1995;25:1118-27.
  • 43. Wilson JW, Djukanovic R, Howarth PH, Holgate ST. Inhaled beclomethasone dipropionate downregulates airway lymphocyte activation in atopic asthma. Am J Respir Crit Care Med 1994;149:86-90.
  • 44. Barnes PJ. Efficacy of inhaled corticosteroids in asthma. J Allergy Clin Immunol 1998;102:531-8.
  • 45. Rowe BH, Keller JL, Oxman AD. Effectiveness of steroid therapy in acute exacerbations of asthma: A meta analysis. Am J Emerg Med 1992;10:301-10.
  • 46. Oh JW, Lee HB, Kim CR, Yum MK, Koh YJ, Moon SJ, et al. Analysis of induced sputum to examine the effects of inhaled corticosteroid on airway inflammation in children with asthma. Ann Allergy Asthma Immunol 1999;82:491-96.
  • 47. Baba K, Hattori T, Koishikawa I, Yoshida K, Kobayashi T, Takagi K. Serum eosinophil cationic protein for predicting the prognosis of a step-down in inhaled corticosteroid therapy in adult chronic asthmatics. J Asthma 2000;37:399-408.
  • 48. Bartoli ML, Bacci E, Carnevali S, Cianchetti S, Dente FL, Di Franco A, et al. Clinical assessment of asthma severity partially corresponds to sputum eosinophilic airway inflammation. Respir Med 2004;98:184-93.
  • 49. Gibson PG, Dolovich J, Girgis-Gabardo A, Morris MM, Anderson M, Hargreave FE, et al. The inflammatory response in asthma exacerbation: Changes in circulating eosinophils, basophils and their progenitors. Clin Exp Allergy 1990;20:661-8.
  • 50. Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 2002;360:1715-21.
  • 51. Tang RB, Chen SJ. Serum levels of eosinophil cationic protein and eosinophils in asthmatic children during a course of prednisolone therapy. Pediatr Pulmonol 2001;31:121-5.
  • 52. Zimmerman B, Lanner A, Enander I, Zimmerman RS, Peterson CG, Ahlstedt S. Total blood eosinophils, serum eosinophil cationic protein and eosinophil protein X in childhood asthma: relation to disease status and therapy. Clin Exp Allergy 1993;23:564-70.
  • 53. Inoue H, Aizawa H, Fukuyama S, Takata S, Matsumoto K, Shigyo M, et al. Effect of inhaled glucocorticoid on the cellular profile and cytokine levels in induced sputum from asthmatic patients. Lung 1999;177:53-62.
  • 54. Bacci E, Di Franco A, Bartoli ML, Carnevali S, Cianchetti S, Dente FL, et al. Comparison of anti-inflammatory and clinical effects of beclomethasone dipropionate and salmeterol in moderate asthma. Eur Respir J 2002;20:66-72.
  • 55. Laviolette M, Malmstrom K, Lu S, Chervinsky P, Pujet JC, Peszek I, et al. Montelukast added to inhaled beclomethasone in treatment of asthma. Montelukast/Beclomethasone Additivity Group. Am J Respir Crit Care Med 1999;160:1862-8.
  • 56. Pavord ID, Ward R, Woltmann G, Wardlaw AJ, Sheller JR, Dworski R. Induced sputum eicosanoid concentrations in asthma. Am J Respir Crit Care Med 1999;160:1905-9.
  • 57. Mac Darlene AJ, Manning P, Ryan M. Zafirlukast or low dose beclomethasone protect against early (EAR) and late asthmatic response (LAR) and allergen induced eosinophilia in mild atopic asthma Eur Respir J 1999;14 (suppl 30):P840.
  • 58. Pizzichini E, Leff JA, Reiss TF, Hendeles L, Boulet LP, Wei LX, et al. Montelukast reduces airway eosinophilic inflammation in asthma: a randomized controlled trial. Eur Respir J 1999;14:12-8.
  • 59. Malmstrom K, Rodriguez-Gomez G, Guerra J, Villaran C, Pineiro A, Wei LX, et al. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma: A randomized controlled trial. Montelukast/Beclomethasone Study Group. Ann Intern Med 1999;130:487-95.
  • 60. Reiss TF, Chervinsky P, Dockhorn RJ, Shingo S, Seidenberg B, Edwards TB. Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma: A multicenter, randomized, double-blind trial. Montelukast Clinical Research Study Group. Arch Intern Med 1998;158:1213-20.
  • 61. Maspero JF, Duenas-Meza E, Volovitz B, Pinacho Daza C, Kosa L, Vrijens F, et al. Oral montelukast versus inhaled beclomethasone in 6-to-11-year-old children with asthma: Results of an open-label extension study evaluating long-term safety, satisfaction, and adherence with therapy. Curr Med Res Opin 2001;17:96-104.
  • 62. Minoguchi K, Kohno Y, Minoguchi H, Kihara N, Sano Y, Yasuhara H, et al. Reduction of eosinophilic inflammation in the airways of patients with asthma using montelukast. Chest 2002;121:732-8.
  • 63. Barnes N, Wei LX, Reiss TF, Leff JA, Shingo S, Yu C et al. Analysis of montelukast in mild persistent asthmatic patients with near-normal lung function. Respir Med 2001;95:379-86.
  • 64. Liu MC, Dube LM, Lancaster J. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: A 6-month randomized multicenter trial. Zilueton study group. J Allergy Clin Immunol 1996;98:859-71.
  • 65. Israel E, Cohn J, Dube L, Drazen JM. Effect of treatment with zilueton, a 5-lipoxygenase inhibitor, in patients with asthma. A randomized controlled trial. Zilueton Clinical Trial Group. JAMA 1996;275:931-36.
  • 66. Lofdahl CG, Reiss TF, Leff JA, Israel E, Noonan MJ, Finn AF, et al. Randomized, placebo-controlled trial of effect of a leukotriene receptor antagonist, montelukast on tapering inhaled corticosteroid in asthmatic patients. Br Med J 1999;319:87-90.
  • 67. Taylor IK, O'Shaughnessy KM, Fuller RW, Dollery CT. Effect of cysteinyl leukotriene receptor antagonist ICI 204.219 on allergen-induced bronchoconstriction and airway hyperrectivity in atopic subjects. Lancet 1991;337:690-4.
  • 68. Gong H Jr, Linn WS, Terrell SL, Anderson KR, Clark KW. Anti-inflammatory and lung function effects of montelukast in asthmatic volunteers exposed to sulfur dioxide. Chest 2001;119:402-8.
  • 69. Dahlen B, Zetterstrom O, Bjorck T, Dahlen SE. The leukotriene antagonist ICI-204.219 inhibits the early airway reaction to cumulative bronchial challenge with allergen in atopic asthmatics. Eur Respir J 1994;7:324-31.
  • 70. Roquet A, Dahlen B, Kumlin M, Ihre E, Anstren G, Binks S, et al. Combined antagonism of leukotrienes and histamine produces predominant inhibition of allergen induced early and late phase airway obstruction in asthmatics. Am J Respir Crit Care Med 1997;155:1856-63.
  • 71. Diamant Z, Timmers MC, van der Veen H, Friedman BS, De Smet M, Depre M, et al. The effects of MK-0591, a novel 5-lipoxygenase activating protein inhibitor, on leukotriene biosynthesis and allergen-induced airway responses in asthmatic subjects in vivo. J Allergy Clin Immunol 1995;95:42-51.
  • 72. Nakamura Y, Hoshino M, Sim JJ, Ishii K, Hosaka K, Sakamoto T. Effect of the leukotriene receptor antagonist pranlukast on cellular infiltration in the bronchial mucosa of patients with asthma Thorax 1998;53:835-41.
  • 73. Wilson AM, Dempsey OJ, Sims EJ, Lipworth BJ. Evaluation of salmeterol or montelukast as second-line therapy for asthma not controlled with inhaled corticosteroids. Chest 2001;119:1021-6.
  • 74. Hamilton A, Faiferman I, Stober P, Watson RM, O'Byrne PM. Pranlukast, a cysteinyl leukotriene receptor antagonist, attenuates allergen-induced early-and-late phase bronchoconstriction and airway hyperresponsiveness in asthmatic subjects. J Allergy Clin Immunol 1998;102:177-83.
  • 75. Diamant Z, Grootendorst DC, Veselic-Charvat M, Timmers MC, De Smet M, Leff JA, et al. The effect of montelukast (MK-0476), a cysteinyl leukotriene recptor antgonist, on allergen-induced airway responses and sputum cell countss in asthma. Clin Exp Allergy 1999;29:42-51.
  • 76. Dahlen B, Margolskee DJ, Zetterstrom O, Dahlen SE. Effect of the leukotriene receptor antagonist MK-0679 on baseline pulmonary function in aspirine sensitive asthmatic subjects. Thorax 1993;48:1205-10.
  • 77. Makker HK, Lau LC, Thomson HW, Binks SM, Holgate ST. The protective effect of inhaled leukotriene D4 receptor antagonist ICI-204.219 against exercise-induced asthma. Am Rev Respir Dis 1993;147:1413-18.
  • 78. Leff JA, Busse WW, Pearlman D, Bronsky EA, Kemp J, Hendeles L, et al. Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma, and exercise-induced bronchoconstriction. N Eng Med J 1998;339:147-52.
  • 79. Kemp JP, Dockhorn RJ, Shapiro GG, Nguyen HH, Reiss TF, Seidenberg BC, et al. Montelukast once daily inhibits exercise-induced bronchoconstriction in 6-to 14-year-old children with asthma. J Pediatr 1998;133:424-8.
  • 80. Villaran C, O’Neill SJ, Helbling A, van Noord JA, Lee TH, Chuchalin AG, et al. Montelukast versus salmeterol in patients with asthma and exercise-induced bronchoconstriction. Montelukast/Salmeterol Exercise Study Group. J Allergy Clin Immunol 1999;104:547-53.
  • 81. Edelman JM, Turpin JA, Bronsky EA, Grossman J, Kemp JP, Ghannam AF, et al. Oral montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction. A randomized, double-blind trial. Exercise Study Group. Ann Intern Med 2000;132:97-104.
  • 82. Yoshida S, Ishizaki Y, Shoji T, Onuma K, Nakagawa H, Nakabayashi M, et al. Effect of pranlukast on bronchial inflammation in patients with asthma. Clin Exp Allergy 2000;30:1008-14.
  • 83. Wenzel SE, Trudeau JB, Kaminsky DA, Cohn J, Martin RJ, Westcott JY. Effect of 5-lipoxygenase inhibition on bronchoconstriction and airway inflammation in nocturnal asthma. Am J Respir Crit Care Med 1995;152:897-905.
  • 84. Ramsy CF, Li D, Wang D, Jany B,. Bronchial biopsy specimen variability: requirement for large sample size and repeated measurement to improve reliability. Am J Respir Crit Care Med 1999:159:A655.
  • 85. Ihaku D, Cameron L, Suzuki M, Molet S, Martin J, Hamid Q. Montelukast, a leukotriene receptor antagonist, inhibits the late airway response to antigen, airway eosinophilia, and IL-5 expressing cells in brown Norway rats. J Allergy Clin Immunol 1999;104:1147-54.
  • 86. Bisgaard H, Loland L, Oj JA. NO in exhaled air of asthmatic children is reduced by the leukotriene receptor antagonist montelukast. Am J Respir Crit Care Med 1999;160:1227-31.
  • 87. Bratton DL, Lanz MJ, Miyazawa N, White CW, Silkoff PE. Exhaled nitric oxide before and after montelukast sodium therapy in school-age children with chronic asthma: A preliminary study. Pediatr Pulmonol 1999;28:402-7.