Topraklarda Kolloid Pestisit İlişkisi

Toprak ve yer altı sularının tarımsal veya diğer kimyasallar tarafından kirletilmesi önemli bir çevresel sorundur. Pestisitlerin yarım asırdır oldukça yaygın bir şekilde tarımda kullanılması dünyadaki birçok hidrolojik sistemin etkilenmesine neden olmaktadır. Pestisitlerin ve kimyasal gübrelerin kullanımıyla karasal çevreye ağır metal girişi toprak ve yer altı suyu kalitesini önemli düzeyde etkilemektedir. Böylece toprakların kimyasal özellikleri ve biyolojik aktivitesi kirlenmeden dolayı değişikliğe uğramaktadır. Bu nedenle, toprak kolloidlerinin davranışı ve pestisitlerin topraktaki hareket mekanizmasının araştırılması gerekmektedir. Bu derlemenin amacı, çevresel sürdürülebilirlilik için önemli olan toprak kolloidlerinin, pestisitlerin tutulumundaki ve hareketindeki etkisini belirlemektir.
Anahtar Kelimeler:

Çevre, pestisit, kolloid, kirlilik

Relationship between Colloid and Pesticide in Soils

The contamination of soil and groundwater by agrochemicals or other chemical factors are a major environmental concern. The widespread use of pesticides over the past half century has led to their detection in many hydrologic systems and of the world. Inputs of heavy metals into the terrestrial environment from fertilizers and pesticides also pose a significant threat to soil and groundwater quality. Furthermore, soil chemical properties and biological activity are constantly changing under field conditions because of pollutions. Therefore, there is a need to examine to relation between soil colloid behavior and pesticide co-transport mechanisms in soil. The aim of this review was to determine the role of soil colloids which is the important for environmental sustainability, in bonding and co-transporting pesticides.

___

  • Almendros, G., 1995. Sorptive interactions of pesticides in soils treated with modified humic acids. European Journal of Soil Science 46 (2): 287–301
  • Bailey, G.W. and White, J.L., 1970. Factors influencing the adsorption, desorption and movement of pesticides in soil. Residue Rev., 32: 29-92.
  • Bailey, G.W. and White, J.L., 1984. Review of Adsorption and Desorption of Organic Pesticides by Soil
  • Colloids, with Implications Concerning Pesticide Bioactivity. J. Agr. Food Chem. 12: 324-32.
  • Calvet, R., 1989. Adsorption of organic chemicals in soils. Environ. Health Persp., 83: 145-1 77.
  • Carringer, R.D., Weber, J.B., and Monaco, T.J., 1975. Adsorption-Desorption of Selected Pesticides by Organic Matter and Montmorillonit J Agric Food Chem. 23 (3): 568-574.
  • Fushiwaki, Y. and Urano, K., 2001. Adsorption of Pesticides and Their Biodegraded Products on Clay Minerals and Soils. Journal of Health Science, 47(4): 429-432.
  • Grover, R., 1966. Influence of Organic Matter, Texture, and Available Water on the Toxicity of Simazine in Soil. Weeds, 14(2): 148-151.
  • Grover, R., 1977. Mobility of Dicamba, Picloram and 2,4- D in Soil Columns. Weed Science, 25(2): 159-162.
  • Hamaker, J.W. and Thompson, J.M., 1972. Adsorption. In: C.A.J. Goring and J.W. Hamaker (Editors), Organic Chemicals in the Soil Environment, 1. Marcel Dekker, New York, pp. 49-143.
  • Hassett, J.J., Banwart, W.L., and Griffin, R.A., 1983. Correlation of Compound properties with Sorption Characteristics of non-polar Compounds by Soils and Sediments: Concepts and Limitations. In: C.W. Francis and S.I. Auerbach (Editors), Environment and Solid Wastes. Buttenvorths, Boston, pp. 161- 178.
  • Ibaraki, M. and Sudicky, E.A., 1995. Colloid-facilitate contaminant transport in discretely fractured porous media 1. Numerical formulation and sensitivity analyses, Water Resour. Res. 31: 2945– 2960.
  • Kanazawa, J., 1989. Relationship between the Soil Sorption Constants for Pesticides and Their Physicochemical Properties. Environ. Toxicol. Chem., 8, 477-484.
  • Karathanasis, A.D., 1999. Subsurface Migration of Cu and Zn Mediated by Soil Colloids’, Soil Sci.Soc. Amer. J. 63, 830–838.
  • Kozak, J., Weber, J.B., and Sheets, T.J., 1983. Adsorption of prometryn and metolachlor by selected soil organic matter fractions. Soil Sci. 136, 94–101.
  • Liu, S.L. and Weber, J.B., 1985. Retention and Mobility of AC 252214 (imazaquin), Chlorsulfuron, Prometryn and SD 95481 (cinmethylin) in Soils. Proc. South. Weed Sci. Soc. 38, 465–474.
  • Liang, L. and McCarthy, J.F., 1995. Colloidal Transport of Metal Contaminants in Groundwater’ in H. E. Allen, C. P. Huang, G. W. Bailey and A. R. Bowes (eds), Metal Speciation and Contamination of Soil, Lewis Publishers, Boca Raton, FL, U.S.A., pp 87–112.
  • Mersie, W. and. Foy, C.L., 1985. Phytotoxicity and Adsorption of Chlorsulfuron as Affected by Soil Properties. Weed Science, Vol. 33, No. 4, pp. 564- 568.
  • Nicholls, P.H. and Evans, A.A., 1991. Sorption of Ionisable Organic Compounds by Field Soils. Part 2: Cations, Bases and Zwitterions. Pestic. Sci. 33, 331– 345.
  • Ouyang, Y., Shinde, D., Mansell, R.S., and Harris, W., 1996, Colloid-enhanced Transport in Subsurface Environments: A review’, Crit. Rev. Environ. Sci. Technol. 26, 189–204.
  • Özbek, H., Kaya, Z., Gök, M., ve Kaptan, H., 1993. Çukurova Üniversitesi Ziraat Fakültesi Toprak Bilimi Kitabı, Yayın no: 73, Ders Kitapları Yayın no: A-16, ss: 77-119, Adana.
  • Öztürk, S., 1997. Tarım ilaçları. 2. Baskı, Ak Basımevi. s: 127-132. İstanbul.
  • Puls, R.W. and Powell, R.M., 1992. Transport of Inorganic Colloids through Natural Aquifer Material: Implications for Contaminant Transport’, Environ. Sci. Technol. 26, 614–621.
  • Richard, D.C., Jerome, B.W. and Thomas, J.M. 1975. Adsorption-Desorption of Selected Pesticides by Organic Matter and Montmorillonite. J. Agric. Food. Chem. Vol: 23 No: 3, p: 568-572.
  • Sanchez-Martin, M.J. and Sanchez-Camazano, M., 1991. Relationship Organophosphorus Pesticides and Adsorption by Soil Components Soil Science SOSCAK, Vol. 152, No. 4, p 283-288. Structure of
  • Seta, A.K. and Karathanasis, A.D., 1997a. Stability and Transportability of Water-Dispersible Soil Colloids’, Soil Sci. Soc. Amer. J. 61, 604–611.
  • Seta, A.K. and Karathanasis, A.D., 1997b. Atrazine Adsorption by Soil Colloids and Co-Transport through Subsurface Environments. Soil Sci. Soc. Amer. J. 61, 612–617.
  • Shimizu, Y., 1990. Sorption of Organic Pollutants in Aquatic Environments: The Effects of Solid Composition. Ph.D. Dissertation, University of Texas at Austin.
  • Seybold, C.A., and Mersie, W., 1996. Adsorption and Desorption Deisopropylatrazine, Metolachlor in Two Soils From Virginia. J. Environ. Qual. 25, 1179–1185. Deethylatrazine,
  • Hydroxyatrazine and
  • Shea, J.P., 1986. Chlorsulfuron Dissociation and Adsorption on Selected Adsorbents and Soils. Weed Sci. 34, 474–478.
  • Shea, J.P., 1989. Role of Humified Organic Matter in Herbicide Adsorption. Weed Technology, 3(1): 190–197
  • Singh, N., Kloeppel, H., and Klein, W., 2001. Sorption Behavior Terbuthylazine in Soils. J. Environ. Sci. Health. B. 36, 397–407. and
  • Spark, K.M. and Swift R.S., 2002. Effect of Soil Composition and Dissolved Organic Matter on Pesticide Sorption. The Science of the Total Environment 298: 147–161.
  • Triegel, E.K. and Guo, L., 1994. Overview of the Fate of Pesticides in the Environment, Water Balance; Runoff vs. Leaching, in R.C. Honeycutt and D.J. Schabacker (eds), Mechanisms of Pesticide Movement into Ground Water. Lewis Publishers, Boca Raton, FL, U.S.A., pp. 1–13.
  • Ünal, H. ve Başkaya, H.S., 1981. Toprak Kimyası Ders Kitabı. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Yayın No: 759, Ankara.
  • Weber, J.B. and Swain, L.R., 1993. Sorption of Diniconazole and Metolachlor by Four Soils, Calcium-Organic Montmorillonite. Soil Sci. 156, 171–177. and Calcium
  • Weber, J.B., Wilkerson, G.G., and Reinhardt, C.F., 2004. Calculating Pesticide Sorption Coefficients (Kd) Using Selected Soil Properties. Chemosphere, 55: 157–166.