Thermophilic Bacteria Investigation in Petroleum Contaminated Soils by Different Isolation Method

There are many and various microorganisms earth flora, ranging from macroscopic to microscopic forms. When soil ecosystem is contaminated by complex compounds and heavy metals, which are difficult to separate from each other, in petroleum and petroleum derived products, for that reason it would be unable to utilization of soil due to decomposition of its physical, chemical and biological characteristics. Biological decomposition of petroleum and petroleum derived products by natural microorganism populations, is the primary mechanism for eliminating the petroleum and other hydrocarbon pollution of environment. The purpose of this study is to research the best isolation method on the isolation of thermophilic bacteria from the soils which are contaminated by petroleum and petroleum derived products. Recent studies related to thermophilic bacteria have been intensified since these bacteria are more resistant to extreme environmental conditions than other bacteria species. With this purpose, 4 different isolation methods have been investigated in isolating the thermophilic bacteria from the petroleum contaminated soil which is contaminated by petroleum and petroleum products. At the end of the research, in order to identify bacteria colonies which are considered to be pure, DNA isolation, Conventional PCR (polymerase chain reaction) Process, Gel Electrophoresis processes are applied.  Different incubation times, carbon resources and enrichment solutions are tried out to obtain a superior method and it is revealed that with the increase in the incubation period, more known/unknown species can be isolated without using additional carbon source from the soil.

___

  • 1. Başkaya Y., Kocabaş A., “Topraktan izole edilen mikroorganizmaların anti-mikrobiyal madde üretim potansiyellerinin belirlenmesi”. KSU J. Nat. Sci.19(4); 393-398, (2016).
  • 2. Singh J. S. , Pandey V. C ., Singh D. P., “Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development”. Agriculture, Ecosystems & Environment 140, (3–4): 339-353, (2011).
  • 3. Torsvik, V., Ovreas, L., “Microbial diversity and function in soil: from genes to ecosystems”. Current Opinion in Microbiology, 5: 240-245, (2002).
  • 4. Karapire M., Özgönen H., “Doğada Yararlı Mikroorganizmalar Arasındaki Etkileşimler ve Tarımsal Üretimde Önemi”. Türk Bilimsel Derlemeler Dergisi 6 (2): 149-157, (2013).
  • 5. Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G., Renella, G. “Microbial Diversity and Soil Functions, European Journal of Soil Science”, 54:655–670, (2003).
  • 6. Roesch, L.F.W., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K., Kent, A.D., Daroub, S.H., Camargo, F.A., Farmerie, W.G., Triplett, E.W., “Pyrosequencing enumerates and contrasts soil microbial diversity”. The ISME Journal, 1: 283–290. (2007).
  • 7. Zhang Q., Wu J., Yang F., Lei Y., Zhang Q., Cheng X.,” Alterations in soil microbial community composition and biomass following agricultural land use change”. Scientific Reports | 6:36587 | DOI: 10.1038/srep36587, (2016).
  • 8. Rampelotto P. H., “Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology”. Sustainability, 2; 1602-1623, (2010).
  • 9. Pikuta, E.V.; Hoover, R.B., “Microbial extremophiles at the limits of life”. Crit. Rev. Microbiol., 33: 183-209, (2007).
  • 10. Kristjansson, M.M., Asgeirsson, B., “Properties of Extremophilic Enzymes and Their Importance in Food Science and Technology. Handbook of Food Enzymology” (ed. J.R. Whitaker), NY, USA, p.77-99, (2002).
  • 11. Seckbach J., “Enigmatic Microorganisms and Life in Extreme Environments”. Springer Science & Business Media, (2013).
  • 12. Demirjian, Dc., Moris-Vara, F., Sassidy, Cs., “Enzymes from extremophiles”. Curr Opin Chem Biol. 5:144–51, (2001).
  • 13. Güven R. G., “Termofilik bakteriler ve biyoteknolojik açıdan önemli bazı enzimleri”. Elektronik Mikrobiyoloji Dergisi TR , 9 (1): 1-10, (2011).
  • 14. Marshall K.C., “Advances in microbial ecology vol 12.”, Springer Science & Business Media. (2012).15. Akkaya S. E., Kıvanç M., “Termofil bakteriler; sıcak su kaynaklarında yaşayan gram negatif basillerin izolasyon ve identifikasyon yöntemleri”. Elektronik mikrobiyoloji dergisi tr. Cilt: 07 (1); 01-23. (2009).
  • 16. Haki, G.D., Rakshit, S.K., “Developments in Industrially Important Thermostable Enzymes: a Review”. Bioresour Tecnol. 89: 17–34, (2003).
  • 17. Bekler F.M., “Türkiye’deki dibekli sıcak su kaynağından termofilik geobacillus sp.DB2 suşunun fizyo-biyokimyasal karakterizasyonu ve 16S rRNA sekanslaması”. Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech. 7(1): 63-71, (2017).
  • 18. Yılmaz M., “The energy potential of Turkey and its importance of renewable energy sources in terms of electricity production”, Ankara Üniversitesi Çevrebilimleri Dergisi 4(2), 33-54, (2012).
  • 19. Dindar E., Şağban F. O. T., Başkaya H. S., “Kirlenmiş topraklarda arıtma çamuru uygulamasının enzim aktivitelerine etkisi”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(1): 81-94, (2017).
  • 20. Bollag J.M. Stotzky G., “Soil Biochemistry volume 6.” Marcell Dekker Inc. (2017)
  • 21. Society Of American Bacteriologist Manual of Microbiological Methods. McGraw Hill Book Company. Inc: London, (1957).
  • 22. Çetinkaya E. Aykan K., “Mikrobiyolojide kullanılan bazı moleküler teknikler”, Karaelmas Fen ve Mühendislik Dergisi /Karaelmas Science and Engineering Journal 2 (1): 53-62, (2012).
  • 23. Hall, T.A., “BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT”. Nucl. Acids. Symp. Ser. 41:95-98 (1999).
  • 24. Erdoğan E. E., “Studies A Bioremediation of Crude Oil Polluted Soil In Laboratory Conditions”, Phd. Thesis, Ankara University Graduate School of Natural and Applied Sciences Department of Soil Science, (2010).