SAYISAL SİMÜLASYONLA DİZEL MOTORDA KİRLETİCİ OLUŞUM TAHMİNİ

Bu çalışmada Dizel bir motorun yanma odasındaki termo-akışkan dinamiği alanını (hız, basınç, sıcaklık) araştırmak amacıyla Hesaplamalı Akışkan Dinamiği (HAD) kodları sayesinde sayısal teknik kullanıldı. Diğer bir önemli amaç, bu motorların yanma prosesindeki kirletici oluşumunun tahmin edilmesi ve modellenmesinin olabilirliğinin belirlenmesidir. Matematiksel model; kütle, momentum ve enerjinin korunumu denklemlerine dayanır (Favre-Averaged Navier-Stokes denklemleri). Bu denklem takımlarını yaklaştırmak için, ayrıca hal bağıntı denklemleri, Yeniden Normalleştirilmiş Grup Teorisi (RNG), k-epsilon türbülans modeli ve sprey mekanizması modeli eklenmiştir. Bu Diesel motordaki prosesler termo-akışkan doğasının yanı sıra kimyayı da içermesinden dolayı, hem kimyasal tepki simülasyonu hem de kirleticilerin kimyasal modeli için özel bir ilgi söz konusudur. NOx oluşumu Zeldovich mekanizmasıyla tahmin edilir. İs oluşumu; çekirdeklenme, yüzey büyümesi, koagülasyon ve oksitlenme prosesine bağlıdır. Simülasyon sonuçları gösteriyor ki; is oluşumu yakıt bakımından zengin ve nispeten düşük sıcaklığa sahip bölgelerde görülüyorken, termal NOx yüksek sıcaklıklarda stokiyometrik karışım oranında görülür.

PREDICTION OF POLLUTANT FORMATION IN DIESEL ENGINE THROUGH NUMERICAL SIMULATION

In this paper numerical technique through Computational Fluid Dynamics (CFD) codes was used in order to investigate thermo-fluid-dynamics field (velocity, pressure, temperature) in the combustion chamber of a Diesel engine. Another important objective was the possibility of modelling and prediction of pollutant formation during the combustion process in these engines. Mathematical model was based on the conservation equations of mass, momentum and energy (Favre-averaged Navier-Stokes equations). To close these equations system was add also: state relations equations, Renormalized Group Theory (RNG) k-epsilon turbulence model and spray mechanism model. Since processes in Diesel engine have not only thermo-fluid nature but also chemistry, a special attention was for chemistry models for both chemical reaction simulation and for the chemistry models of pollutants. Formation of NOx is predicted by Zeldovich mechanism. Soot formation relies on the nucleation, surface growth, coagulation and oxidation process. Result of simulation shown that thermal NOx is seen at stoichiometric mixture fraction at high temperatures, while soot formation is seen fuel-rich and relatively lowtemperature regions.

___

  • 1. Amsden, A. A., O'Rourke, P. J. and Butler T. D., “KIVA II: A Computer Program for Chemically Reactive Flows with Sprays. Los Alamos National Laboratory Report, LA-11560-MS. Los Alamos, NM”, USA. 1989.
  • 2. Bracco, F.V., “Modeling of Engine Spray”, SAE Trans., 94, 144-167., 1985.
  • 3. Correa, C., “Combustion Simulations Diesel Engines Using Reduced Reaction Mechanism”. PhD Thesis, University of Heidelberg”, Heidelberg. 2000.
  • 4. Merker, G., Schwarz, Ch., Stiesch G. and Otto, F., “Simulating Combustion and pollutant formation”, Springer, Germany. 2006.
  • 5. Naydenova, I. I., “Soot Formation Modeling During Hydrocarbon Pyrolysis and Oxidation Behind Shock Wave”. PhD. Thesis, University of Heidelberg, Heidelberg. 2007.
  • 6. Ogink, R., “Computer Modelling of HCCI Combustion, Ph.D. Thesis, Chalmers University of Technology”, Göteborg, Sweden. 2004.
  • 7. Ravi, A., “CFD Simulation of Combustion Using Automatically Reduced Reaction Mechanisms: A Case for Diesel Engine”. PhD Thesis, University of Heidelberg”, Heidelberg. 2007.
  • 8. Yakhot, V. and Orzag, S. A., “Renormalization Group Analysis of Turbulence. I. Basic Theory”, Journal of Scientific Computing, 1, 3. 1986.
  • 9. Zeldovich, Y. B., “The oxidation of nitrogen in combustion and explosions”, Acta Physiochimica, 21, 577-628.”, 1946.
  • 10. Özsezen, A.N. and Çanakcı, M., “Performance and combustion in a direct injection diesel engine fuelled with waste palm and canola oil methyl esters”. J. Fac. Eng. Arch. Gazi Univ. Vol 24, No 2, 275- 284, 2009.
  • 11. Karel, A., “Exhaust emission behaviours at diesel engines”. J. Fac. Eng. Arch. Gazi Univ. Vol 12, No 1, 71-90, 1997.
  • 12. Dorri, A., “Numerical simulation of thermo-fluid dynamics fiels and prediction of pollutants formation in Diesel engines through CFD software”. PhD Thesis, Polytechnic University of Tirana, Tirana. 2010.
  • 13. Labs, J. E. and Parker, T. E., “A Comparison of Single Shot Diesel Spray Combustion Emissions with Trends Predicted by a Conceptual Model, Combustion Science and Technology, 179,1159- 1182”, 2007.