ELEKTRİK ARK TEKNİĞİ İLE UZUN PERİYOTLU FIBER IZGARA TASARIMI VE ÜRETİMİ

Elektrik ark yöntemi, fiberin mekanik ortamda kaydırılırken elektriksel ark deşarjları ile yazıldığı, esnek, uygulaması kolay ve ekonomik bir tekniktir. Bu çalışmada, elektrik ark yöntemi ile uzun periyotlu fiber ızgarasının (LPFG) üretilmesi için deneysel bir düzenek önerilmiş ve üretime etki edebilecek tasarım değişkenleri araştırılmıştır. Tipik bir LPFG nin üretildiği ilk deneysel çalışmanın ardından, LPFG kullanarak erbiyum katkılı fiber yükselticinin (EDFA) kazanç spektrumunun düzleştirilmesi üzerine araştırmaya yön verilmiştir. Araştırma sonuçları ve deneysel bulgular, elektrik ark tekniği ile üretilen LPFGlerin EDFAnın kazanç spektrumunu düzleştirici yönde olumlu etki sağlayabileceğini göstermiştir.

DESIGN AND PRODUCTION OF LONG PERIOD FIBER GRATING USING ELECTRICAL ARC TECHNIQUE

The electrical arc technique is a flexible, easily applicable and cost-effective technique, in which fiber is written to form a grating structure using electrical arc-discharges during mechanical motion. In this study, an experimental set up is proposed to product long period fiber gratings (LPFG) and the design parameters that affect the process are investigated. After the first experimental study on production of a typical LPFG, the research is directed on smoothing the gain spectrum of erbium doped fiber amplifiers using LPFG. The research results and experimental findings demonstrate that LPFGs manufactured using electrical arc technique can provide positive a effect on smoothing the gain spectrum of an EDFA.

___

  • 1. Yu, Y., Lui, L., Tam, H. ve Chung, W., “FiberLaser Based Wavelength Division Multiplexed Fiber Bragg Grating Sensor Systems”, IEEE Photonics Technology Letters, Cilt 13, No 7, 702-704, 2001.
  • 2. Chen, L.R., “Phase Shifted Long-Period Gratings by Refractive Index Shifting”, Optics Communications, Cilt 200, No1-6, 187-191, 2001.
  • 3. Lin, C.Y., Wang, L.A. ve Chern, G.W., “Corrugated Long-Period Fiber Gratings as Strain, Torsion, and Bending Sensors”, IEEE J. of Lightwave Technology, Cilt 19, No 8, 1159- 1168, 2001.
  • 4. Kalachev, A.I. ve Nikogosyan, D.N., “Long Period Fiber Grating Fabrication by High Intensity Femtosecond Pulses at 211nm”, IEEE J. of Lightwave Technology, Cilt 23, No 8, 2568- 2578, 2005.
  • 5. Navruz, I. ve Altuncu, A., “Optimization of Phase Shifted Long-Period Fiber Gratings for Multiband Rejection Filters”, IEEE J. of Lightwave Technology, Cilt 26, No 14, 2155-2161, 2008.
  • 6. Hill, K. O., Fujii, Y., Johnson, D.C. ve Kawasaki, B.S., “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication”, Applied Physics Letters, Cilt 32, No 10, 647-649, 1978.
  • 7. Wang, Y.P., Wang, D. N., Jin,W., Rao,Y.J. ve Peng, G.D., “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber”, Applied Physics Letters, Cilt 89, No 15, 151105, 2006.
  • 8. Wang, Y., Jin, W., Ju, J., Xuan, H., Ho, H.L, Xiao, L. Ve Wang, D., “Long period gratings in air-core photonic bandgap fibers," Optics Express, Cilt 16, No 4, 2784-2790 2008.
  • 9. Rego, G., Marques, P.V.S., Salgado, H.M. ve Santos, J.L., "Simultaneous measurement of temperature and strain based on arc-induced longperiod fibre gratings", Electronics Letters, Cilt 41, No 2, 60-62, 2005.
  • 10. Rego, G., Santos, J.L. ve Saldago, H.M., "Polarization dependent loss of arc-induced longperiod fibre gratings", Optics Communications, Cilt 262, No 2, 152-156, 2006.
  • 11. Petrovic, J.S., Dobb, H., Mezentsev, V.K., Kalli, K., Webb, D.J. ve Bennion, I., "Sensitivity of LPGsin PCFs fabricated by an electric arc to temperature, strain, and external refractive index”, IEEE J. of Lightwave Technology, Cilt 25, No 5, 1306-1312, 2007.
  • 12. Rego, G., Marques, P.V.S., Santos, J.L.ve Saldago, H.M., “Estimation of the Fibre Temperature during the Inscription of ArcInduced Gratings”, Optics Communications, Cilt 259, No 2, 620-625, 2006.
  • 13. Rego, G., Santos, J.L. ve Saldago, H.M. “Refractive Index Measurement with LongPeriod Gratings Arc-Induced in Pure-Silica-Core Fibres”, Optics Communications, Cilt 259, No 2, 598-602, 2006.
  • 14. Mihailov, S. J., Grobnic, D., Huimin, D., Smelser, C.W. ve Jes, B., "Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers”, IEEE Photonics Technology Letters, Cilt 18, No 17, 1837-1839, 2006.
  • 15. Rego, G., "Polarization dependent loss of mechanically induced long-period fibre gratings", Optics Communications, Cilt 281, No 2, 255- 259, 2008.
  • 16. Lin, C.Y., Chern, G.W. ve Wang, L.A., "Periodical corrugated structure for forming sampled fiber Bragg grating and long-period fiber grating with tunable coupling strength", Lightwave Technology, Cilt 19, No 8, 1212- 1220, 2001.
  • 17. Von Bibra, M. L., Roberts, A. ve Canning J., "Fabrication of long-period fiber gratings by use of focused ion-beam irradiation", Optics Letters, Cilt 26, No 11, 765-767, 2001.
  • 18. Chan, F.Y.M. ve Chiang, K.S., "Analysis of Apodized Phase-Shifted Long-Period Fiber Gratings”, Optics Communications, Cilt 244, No 1-6, 233-243, 2005.
  • 19. Guler, N.F., Navruz, I., "The Optical Grating Based Solutions for Dispersion Compensation in Optical Communication Systems", J. of the Faculty of Engineering and Architecture of Gazi University, Cilt 21, No 1, 129-136, 2006.
  • 20. Rego, G. ve Ivanov O., “Investigation of the mechanisms of formation of long-period gratings arc-induced in pure-silica-core fibres”, Optics Communications, Cilt 284, No 8, 2137-2140, 2011.
  • 21. Zhang, A.P., Chen, X.W., Guan, Z.G., He, S., Tam, H.Y. ve Chung, W.H., "Optimization of Step-Changed Long-Period Gratings for GainFlattening of EDFAs", IEEE Photonics Technology Letters, Cilt 17, No 1, 121-123, 2005.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ