Elektrot Etkileşimi ve Uyartım Eşiğinin Azaltılmasına Yönelik Sonlu Elemanlar Yöntemi Tabanlı Yeni Bir Retina Uyartım Stratejisi

Dejeneratif göz hastalıkları retinanın dış katmanına zarar vererek fonksiyonelliğini yitirmesine, görsel yol boyunca sinyal iletiminin kesilerek görsel algı kaybına neden olmaktadır. Görsel protezler, işlevselliğini kaybetmiş görsel bölgelerin bypass edilerek zarar görmemiş bölgelerin yerleştirilen elektrot dizisi vasıtasıyla elektriksel olarak uyartılarak görsel algının yeniden kazanılmasını sağlayan sistemlerdir. Günümüzde görsel protezler hedeflenen yüksek uzaysal çözünürlükten oldukça uzaktır. Bunun önündeki temel problem elektrot etkileşimi nedeniyle elektrot sayısının artırılamamasıdır. Bu çalışmada, elde edilen görsel algının çözünürlüğünü artırılması, uyartım için gerekli güç tüketiminin ve uyartım sonucu dokuda oluşan sıcaklığın azaltılması amacıyla Sonlu Elemanlar Yöntemi kullanılarak geliştirilen retinanın elektriksel uyartımında Merkez-Ağırlıklı Zaman Kaymalı Uyartım Stratejisi önerilmiştir. Bu strateji, yarı-koni biçimli elektrot tasarımı ve konfigürasyonu ile zamanda kaydırılmış ve konuma göre ağırlıklandırılmış elektriksel uyartım yaklaşımını kullanmaktadır. Önerilen stratejinin üstünlüğü konvansiyonel elektrot dizilimi ve uyartım yöntemiyle karşılaştırılmış, daha lokalize uyartım sağlanarak ayırt edilebilir elektrik alan ve akım yoğunluğu dağılımları elde edilmiştir. Konvansiyonel yöntemle uyartım akım eşiği 10 µA seviyesinde iken önerilen stratejide bu değer 0.5-2 µA aralığında elde edilmiştir. Ayrıca, konvansiyonel yöntemle uyartım için harcanan güç 4.19 mW/mm3 ve dokudaki sıcaklık artışı 1.38°C iken sunulan yöntemle bu değerler sırayla 0.239 mW/mm3, 0.4°C olarak bulunmuştur. Önerilen stratejinin yüksek çözünürlüklü retina implant sisteminin geliştirilmesine, çözünürlük, güç tüketimi ve dokudaki sıcaklık artışının sınırlanması açısından önemli katkı sağlayacağı sonucuna varılmıştır.

___

  • A. Caspi, J.D., Dorn, K.H., McClure, M.S., Humayun, R.J., Greenberg, M.J., McMahon, "Feasibility study of a retinal prosthesis:spatial vision with a 16-electrode implant", Archives of Ophthalmology, Cilt 127, No 4, 398–401, 2009.
  • Schiller P.H., Tehovnik E.J., “Visual prosthesis”. Perception, Cilt 37, No 10, 1529-1559, 2008.
  • Roodhooft J.M.J., “Leading causes of blindness worldwide”, Bull Soc Belge Ophtalmol, Cilt 283, 19-25, 2002.
  • Humayun MS., Prince M, de Juan E Jr, Barron Y, Moskowitz M, Klock IB, Milam AH, “Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa”, Investigative Ophthalmology & Visual Science, Cilt 40, No 1, 143-8, 1999.
  • Sekirnjak C., Hottowy P., Sher A., Dabrowski W., Litke A.M., Chichilnisky E.J., “Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays”, Journal of Neurophysiology, Cilt 95, No 6, 3311–3327, 2006.
  • Zrenner E. "Recent developments in subretinal electronic implants: chances and limitations", ARVO Meeting, Fort Lauderdale, Florida, 2010.
  • Humayun M.S., Cruz L., Dagnelie G. ve ark., “Argus II Study Group. Interim performance results from the second sight(R) ArgusTM II Retinal Prosthesis Study”, ARVO Meeting, Cilt 51, 2022, 2010.
  • Cruz L., Coley B., Christopher P. ve ark, “Patients blinded by outer retinal dystrophies are able to identify letters using the Argus TM II Retinal Prosthesis System”, ARVO Meeting, Cilt 51, 2023, 2010.
  • Zrenner, E., Miliczek, K. D., Gabel, V. P., Graf, H. G., Guenther, E., ve ark., “The development of subretinal microphotodiodes for replacement of degenerated photoreceptors”, Ophthalmic Research, Cilt 29, No 5, 269-280, 1997.
  • Chow AY, Chow VY, “Subretinal electrical stimulation of the rabbit retina”, Neuroscience Letters, Cilt 225, 13-16, 1997.
  • Allen PJ, Yeoh J, McCombe M, Heriot M, Heriot W, Luu CD, ve ark., “Bionic Vision Australia – implantation of suprachoroidal retinal prosthesis- results for the first participants”, ”, Investigative Ophthalmology & Visual Science, Cilt 54, 1031, 2013.
  • Krantz, J.H., "Chapter 3: The Stimulus and Anatomy of the Visual System", Experiencing Sensation and Perception, Pearson Education, 2012.
  • Collins C.M., Smith M.B., Turner R., “Model of local temperature changes in brain upon functional activation”, Journal of Applied Physiology, Cilt 97, 2051–2055, 2004.
  • Connor C.W., Hynynen K., “Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery,” IEEE Trans. Biomed. Eng., Cilt 51, No. 10, 1693–1706, 2004.
  • Gosalia, K., Weiland, J., Humayun, M., Lazzi, G., “Thermal elevation in the human eye and head due to the operation of a retinal prosthesis”, IEEE Transactions On Biomedical Engineering, Cilt 51, No 8, 1469-1477, 2004.
  • Talukder, M. I., “Implantable Neural Stimulation and Neural Response Reading Microsystems Design for Wireless Retinal and Auditory Prostheses”, PhD Thesis, Electrical Engineering, Wayne State University, A.B.D., 2007.
  • Rao SS., “The Finite Element Method in Engineering”, Elsevier Science and Technology Books, Fifth Edition, 2010.
  • Alonso Orozco, F., “Finite Element Method Modelling and Simulations for Comparison between Deep Brain Stimulation Electrodes”, Master Thesis, Linköping University, The Institute of Technology, 2012.
  • Malmivuo, J., Plonsey, R., “Bioelectromagnetism”, Oxford University Press, New York, 1995.
  • Tandon, N., “Electrical stimulation for cardiac tissue engineering”, PhD Thesis, Biomedical Engineering, Columbia University, 2009.
  • Durand D., Bronzino, J.D., “Electric Stimulation of Excitable Tissue”, The Biomedical Engineering Handbook Chapter 17, 229-251, 1995.
  • Cannizzaro C., Tandon N., Figallo E., ve ark., “Practical aspects of cardiac tissue engineering with electrical stimulation”, Methods in Molecular Medicine, Cilt 140, 291-307, 2007.
  • Kim, S., Tathireddy, P., Normann, R. A., Solzbacher, F., “Thermal impact of an active 3-D microelectrode array implanted in the brain”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Cilt 15, No 4, 493-501, 2007.
  • I. Chang, “Finite element analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity,” Biomed. Eng. Online, 2-12, 2003.
  • Greenwald S.H., Horsager A., Humayun M.S., Greenberg R.J., McMahon M.J., Fine I., “Brightness as a function of current amplitude in human retinal electrical stimulation”, Invest Ophthalmol Vis Sci., Cilt 50, No 11, 5017–25, 2009.
  • Yanai D., Weiland J.D., Mahadevappa M., Greenberg R.J., Fine I., Humayun M.S., “Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa”, American Journal of Ophthalmology, Cilt 43, No 5, 820–827, 2007.
  • Fujikado T., Kamei M., Sakaguchi H., Kanda H., Morimoto T., Ikuno Y., ve ark. “Testing of semichronically implanted retinal prosthesis by suprachoroidaltransretinal stimulation in patients with retinitis pigmentosa”, Invest Ophthalmol Vis Sci., Cilt 52, No 7, 4726–33, 2011.
  • Ahuja A.K., Behrend M.R., Kuroda M., Humayun M.S., Weiland J.D., “An in vitro model of a retinal prosthesis”, IEEE Transactions on Bio-medical Engineering, Cilt 55, No 6, 1744–53, 2008.
  • Joucla S., Yvert B., “Modeling of extracellular neural stimulation: from basic understanding to MEA-based applications”, J Physiol Paris, Cilt 106, 146–58, 2012.
  • Abramian, M., Lovell, N. H., Morley, J. W., Suaning, G. J., & Dokos, S., “Activation of retinal ganglion cells following epiretinal electrical stimulation with hexagonally arranged bipolar electrodes”, Journal of Neural Engineering, Cilt 8, No 3, 2011.
  • Ghazavi A., Westwick D., Xu F., Wijdenes P., Syed N., Dalton C., “Effect of planar microelectrode geometry on neuron, stimulation: finite element modeling and experimental validation of the electrode shape”, J. Neurosci. Methods, Cilt 248, 51–8, 2015.
  • Mueller, J.K., Grill, W.M., “Model-based analysis of multiple electrode array stimulation for epiretinal visual prostheses”, Journal of Neural Engineering, Cilt 10, No 3, 036002, 2013.
  • Schiefer M.A., Grill W.M., “Sites of neuronal excitation by epiretinal electrical stimulation”, IEEE Trans Neural Syst Rehabil Eng., Cilt 14, No 1, 5–13, 2006.
  • Kasi H., Bertsch A., Guyomard J.L., Kolomiets B., Picaud S., Pelizzone M., Renaud P., “Simulations to study spatial extent of stimulation and effect of electrode–tissue gap in subretinal implants”, Medical Engineering & Physics, Cilt 33, No 6, 755-763, 2011.
  • Kasi H., Hasenkamp W., Cosendai G., Bertsch A., Renaud P., “Simulation of epiretinal prostheses-Evaluation of geometrical factors affecting stimulation thresholds”, Journal of neuroengineering and rehabilitation, Cilt 8, No 1, 2011.
  • Wilke R.G.H., Moghadam G.K. Lovell, N.H., Suaning G.J., Dokos S., “Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal”, Journal of neural engineering, Cilt 8, No 4, 046016, 2011.
  • Moghaddam G.K., Lovell N.H., Wilke R.G., Suaning G.J., Dokos S., “Performance optimization of current focusing and virtual electrode strategies in retinal implants”, Computer methods and programs in biomedicine, Cilt 117, No 2, 334-342, 2014.
  • Palanker D., Vankov A., Huie P., Baccus S. “Design of a high-resolution optoelectronic retinal prosthesis”, Journal of neural engineering, Cilt 2, No 1, 105, 2005.
  • Elwassif M.M., Kong Q., Vazquez M., Bikson M., “Bio-heat transfer model of deep brain stimulation-induced temperature changes,” J. Neural Eng., Cilt 3, 306–315, 2006.
  • Seese T.M., Harasaki H., Saidel G.M., Davies C.R., “Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue in chronic heating,” Lab. Investigation, Cilt 78, 1553–1562, 1998.
  • Celik M.E., Karagoz I., “Modelling of Stimulation Environment Using Monophasic Rectangle Pulse for Various Stimulation Parameters”, Acta Physica Polonica A, Cilt 128, 2015.
  • Ueda M., Bures J., Fischer J., “Spreading depression elicited by thermal effects of ultrasonic irradiation of cerebral cortex in rats”, J. Neurobiol., Cilt 8, 381–393, 1977.
  • Fujii T., Ibata Y., “Effects of heating on electrical activities of guinea pig olfactory cortical slices”, Eur. J. Physiol., Cilt 392, 257–260, 1982.
  • LaManna J.C., McCracken K.A., Patil M., Prohaska O.J., “Stimulus-activated changes in brain tissue temperature in the anesthetized rat”, Metabolic Brain Disease, Cilt 4, 225–237, 1989.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ
Sayıdaki Diğer Makaleler

Yüksek plastisiteli killerin kalıcı kayma mukavemetine plastisitenin etkisi

Mustafa HATİPOĞLU, Recep İYİSAN

Ovalbüminin titanyum dioksit ve zirkonya yüzeylerle etkileşimi ve adsorpsiyonunun araştırılması

Türkan KOPAÇ, Erol KULAÇ

KARBON ELYAF TAKVİYELİ KARBON NANOTÜP KATKILI EPOKSİ KOMPOZİT HELİSEL YAYLARIN MEKANİK DAVRANIŞLARI

Yahya KARA, Hamit AKBULUT

Akıllı şebekelerde enerji depolama uygulamalarının önündeki fırsatlar ve karşılaşılan zorluklar

Koray ERHAN, Engin ÖZDEMİR, Ahmet AKTAŞ, Şule ÖZDEMİR

Elastik bir ortamdaki grafen tabakanın titreşim hesabı

Ömer CİVALEK, Kadir MERCAN, Bekir AKGÖZ, Çiğdem DEMİR, Mehmet Cihad ERDİNÇ

MATRİS YAPISININ ve BORLAMA SÜRESİNİN Cu-Ni-Mo ALAŞIMLI KGDD’İN AŞINMA DAVRANIŞINA ETKİSİNİN İNCELENMESİ

Gülcan TOKTAŞ, Alaaddin TOKTAŞ, Kenan GÜLSÜN

Matris yapısının ve borlama süresinin Cu-Ni-Mo alaşımlı Kgdd'in aşınma davranışına etkisinin incelenmesi

Alaaddin TOKTAŞ, Gülcan TOKTAŞ, Kenan GÜLSÜN

Filled fonksiyon kullanarak vana etkili ekonomik yük dağıtımı probleminin çözülmesi

İbrahim EKE, Süleyman Sungur TEZCAN, Coşkun ÇELİK

KENTSEL BÜYÜME MODELİ OLARAK KONSANTRİK HALKALAR TEORİSİNE FİZİK KURAMLARI ÇERÇEVESİNDE YENİ BİR YAKLAŞIM: KUVVET MODELİ ÜZERİNDEN KİNETİK VE POTANSİYEL KENTLEŞME KAVRAMI

Ali ULAŞ, Pınar KISA OVALI

Kısa dönem elektrik talep tahminleri için yapay sinir ağları ve uzman sistemler tabanlı hibrit sistem geliştirilmesi

Mehmet BULUT, Benan BAŞOĞLU