Yüksek plastisiteli killerin kalıcı kayma mukavemetine plastisitenin etkisi

Zeminlerde bir düşey gerilme altında deformasyonun artışıyla büyük şekil değiştirmeler sonrasında sabitkalan en düşük kayma gerilmesi değerine kalıcı kayma gerilmesi adı verilmektedir. Bu gerilme değerlerinegöre hesaplanan mukavemet ise kalıcı kayma mukavemeti (KKM) olarak tanımlanmaktadır. Özellikle aşırıkonsolide, sert ve fisürlü killerin gösterdiği gevrek davranış nedeniyle kayma mukavemetinde artandeformasyonla birlikte önemli derecede azalmalar görülmektedir. Kalıcı şartlara büyük yer değiştirmelersonucunda erişildiğinden geoteknik mühendisliğinde önceden kaymış ve tekrar aktif hale geçen şevlerinanalizinde önemli olmaktadır. Bu nedenle bu tür stabilite problemlerinin incelenmesinde veya tasarımdakalıcı kayma mukavemeti parametrelerine ihtiyaç duyulmaktadır. KKM parametrelerini laboratuvardabelirlemede yaygın olarak kullanılan deney yöntemleri Halka Kesme ve Tekrarlı Kesme Kutusudur. KKMparametrelerine mineraloji, efektif düşey gerilme, kesme hızı ve kil yüzdesi gibi birçok faktör etkiliolmaktadır. Burada etkiyen esas faktör zeminin mineralojik özellikleri olup, dolaylı olarak zemininplastisitesi ile KKM arasında ilişkinin varlığına işaret etmektedir. Bu çalışmada 31 farklı plastisiteözelliklerine sahip numune üzerinde Tekrarlı Kesme Kutusu ve Halka Kesme deneyleri yapılarak, KKMparametreleri belirlenmiştir. Konsolidometreler kullanılarak hazırlanan numunelerin tamamı yüksekplastisiteli kil (CH) sınıfında olup deneyler 0,02 - 0,03 mm/min kesme hızlarında ve en az üç farklı düşeygerilme altında gerçekleştirilmiştir. KKM'nin kıvam limitleri ile değişimi incelenmiş, pratik amaçlar içinkorelasyonlar geliştirilmiş, elde edilen bulgular önceki çalışmalarla karşılaştırılmıştır.

The effect of plasticity on residual shear strength for high plasticity clays

The minimum and constant value of shear stress attained at large displacements is defined as residual shearstrength (RSS) of soils. For especially over-consolidated fissured clays, as the shear deformation increases the shear stress firstly reaches to a peak value, and then gradually decreases to a constant value. RSS is usefulfor analyzing the pre-failed slopes in fissured clays and the progressive failures. Reversal Direct Shear andRing Shear Tests are well-known methods to obtain the RSS parameters in the laboratory. Previousinvestigations reveal that RSS is affected by mineralogy, effective normal stress and shear rate. As the mainaffecting parameter is mineralogy, a relationship between consistency limits and RSS could be established indirectly. In this study, Reversal Direct Shear and Ring Shear tests were carried out on 31 clay sampleshaving different plasticity characteristics to determine the RSS parameters. Tests were conducted at least at three different vertical stress levels at shear rates of 0.02 - 0.03 mm/min on the high plasticity clays (CH)samples prepared with slurry consolidometers. The variations of RSS parameters versus consistency limitswere studied. Some correlations were established for practical purposes and the findings were compared withthe previous studies.

___

  • 1. Skempton A.W., Residual strength of clays in candslides, Folded Strata and the Laboratory, Geotechnique, 35 (1), 3-18, 1985.
  • 2. Stark T.D., Eid T.H., Drained residual strength of cohesive soils, Journal of Geotechnical Engineering, 120 (5), 856-871, 1994.
  • 3. Mesri G., Shahien M., Residual shear strength mobilized in first time slope failures, Journal of Geotechnical and Geoenvironmental Engineering, 129 (1), 12-31, 2003.
  • 4. Skempton A.W., Long-term stability of clay slopes, Geotechnique, 14 (2), 75-101, 1964.
  • 5. Önalp A., Arel E., Yamaç ve Şevlerin Mühendisliği, Birsen Yayınevi. İstanbul. 2004.
  • 6. Mitchell J.K., Soga K., Fundamentals of Soil Behavior, Third Edition, John Wiley & Sons, New York. 2005.
  • 7. Khosravi, M., Meehan, C., Cacciola, D., Khosravi,A., Effect of fast shearing on the residual shear strengths measured along pre-existing shear surfaces in kaolinite, Geo-Congress-2013, San Diego, California, 245-254, 3-7 Mart, 2013.
  • 8. Kimura S., Nakamura S., Vithana S.B., Sakai K., Shearing rate effect on residual strength of landslide soils in the slow rate range, Landslides, 11, 969-979, 2014.
  • 9. Wesley L.D., Residual strength of clays and correlations using Atterberg limits, Geotechnique, 53 (7), 669-672, 2003.
  • 10. Tiwari B., Marui H., Objective oriented multistage ring shear test for shear strength of landslide soil, Journal of Geotechnical and Geoenvironmental Engineering, 130 (2), 217-222, 2004.
  • 11. Mesri G., Cepeda-Diaz A.F., Residual shear strength of clays and shales, Geotechnique, 36 (2), 269-274, 1986.
  • 12. Stark T.D., Hussain M., Empirical correlations: Drained shear strength for slope stability analyses, Journal of Geotechnical and Geoenvironmental Engineering ASCE, 139 (6), 853-862, 2013.
  • 13. Hatipoğlu M., Kalıcı kayma mukavemetinin halka kesme deneyi ile belirlenmesi, Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2012.
  • 14. Lupini J.F., Skinner A.E., Vaughan P.R., The drained residual strength of cohesive soils, Geotechnique, 31 (2), 181-213, 1981.
  • 15. Di Maio C., Scaringi G., Shear displacements induced by decrease in pore solution concentration on a preexisting slip surface, Engineering Geology, 200, 1-9, 2016.
  • 16. He L., Wen B.P., Effect of porewater salinity on residual shear strength of clays and their mixtures, Developments in Engineering Geology, Geological Society, London. Engineering Geology Special Publication, 27, 239-248, 2016.
  • 17. Shibasaki T.; Matsuura S., Hasegawa Y., Temperaturedependent residual shear strength characteristics of smectite-bearing landslide soils, Journal of Geophysical Research: Solid Earth, 122, 1449-1469, 2017.
  • 18. Stark T.D., Choi H., McCone S., Drained shear strength parameters for analysis of landslides, Journal of - Geotechnical and Geoenvironmental Engineering, 131 (5), 575-588, 2005.
  • 19. Suzuki M., Tsuzuki S., Yamamoto T., Physical and chemical index properties of residual strength of various soils, Memoirs Fac. Engineering Yamaguchi University, 56 (1), 1-11, 2005.
  • 20. Yurtcu S., Ozocak A., Prediction of compression index of fine grained soils using statistical and artificial intelligence methods, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 597-608, 2016.
  • 21. Vithana S.B., Nakamura S., Gibo S. Yoshinaga A., Kimura S., Correlation of large displacement drained shear strength of landslide soils measured by direct shear and ring shear devices, Landslides, 9, 305, 2012. 22. Chen X.P., Liu D., Residual strength of slip zone soils, Landslides, 11, 305-314, 2014.
  • 23. Bishop A.W., Green G.E., Garga V.K., Andersen A., Brown J.D., A new ring shear apparatus and its application to the measurement of residual strength; Geotechnique, 21 (4), 273-328, 1971.
  • 24. ASTM - D3080, Standard test method for direct shear test of soils under consolidated drained conditions, American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA, 2004.
  • 25. Cancelli A., Residual shear strength and stability analysis of a landslide in fissured overconsolidated clays, Bull. Int. Assoc. Engineering Geology, 16, 193- 197, 1977.
  • 26. Dewoolkar M.M., Huzjak J.R., Drained residual shear strength of some claystones from Front Range, Colorado, Journal of Geotechnical and Geoenvironmental Engineering, 131 (12), 1543-1551, 2005.
  • 27. Voight B., Correlation between atterberg plasticity limits and residual shear strength of natural soils, Geotechnique, 23 (2), 265-267, 1973.
  • 28. Kanji M.A., The relationship between drained friction angles and Atterberg limits of natural soils. Geotechnique, 24 (4), 671-674, 1974.
  • 29. URL1, Geosim, Progressive Mobilization of Soil Shear Strength, http://geosim.engr.mun.ca/progmob.htm, Erişim Tarihi, Şubat 2016.