Askorbik asitin MoS2esaslı elektrotla elektrokimyasal tayini

Bu çalışmada, grafen, grafen oksit ve MoS iki boyutlu nanotabakalarına ayrılmak suretiyle 10 farklı kaplama süspansiyonu hazırlanmıştır. Hazırlanan kaplama süspansiyonlarıyla damlatarak-kaplama yöntemi kullanılarak camsı karbon elektrot modifikasyonu gerçekleştirilmiştir. Farklı kompozisyonlarda hazırlanan modifiye elektrotlar ile askorbik asit (AA) tayini için elektrokatalitik duyarlık incelenmiştir. Ölçümler diferansiyel puls voltametrisi (DPV) tekniği ile gerçekleştirilmiştir. Elektrotun modifikasyonu yapılarak 2,8 kata kadar duyarlıkta artış sağlanmıştır. MoS2'ün AA'ya karşı bir katalitik etkinliğinin görüldüğü bu çalışmada, AA'ya karşı duyarlık 7,26 µA mM-1, doğrusal çalışma aralığı 27 µM - 1100 µM aralığında ve gözlenebilme sınırı da 8,1 µM olarak bulunmuştur. Modifiye elektrotla gerçekleştirilen gerçek numune analizinde ortalama % 5,05 bağıl hatayla AA tayini gerçekleştirilmiştir. Hazırlanan MoS2'ün tabaka kalınlığı atomik kuvvet mikroskobu (AFM) cihazıyla ölçülmüş ve modifiye elektrot yüzeyi taramalı elektron mikroskobu (SEM) ile görüntülenmiştir

Electrochemical analysis of ascorbic acid with MoS2 based electrode

In this work, ten suspensions of graphene, graphene oxide and MoS2 were prepared by sonically assisted exfoliation. Electrode modification was achieved by dropping-drying method onto glassy carbon (GCE) electrode. Electrocatalytic activity against ascorbic acid (AA) was determined by the use of configured different modified electrodes. Measurements were achieved by differential pulse voltammetry (DPV). Electrode modification provided 2.8-fold increase at the precision. The results showed that catalytically active MoS2 modified electrode have 7.26 µA mM-1of precision, 27 µM - 1100 µM of linear working range and 8.1 µM of limit of detection at AA determination. In the real sample analysis, AA determination was achieved with 5.05 % relative error. The thickness of layer and surface characterization of modified electrode were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively

___

  • 1. Demir Ç., Akgöz B., Erdinç M.C., Mercan K., Civalek Ö., Free vibration analysis of graphene sheets on elastic matrix, Journal of the Faculty of Engineering and Architecture of Gazi University 32 (2), 551-562, 2017.
  • 2. Yuan R.Y., Wu M., Hu S., Antioxidant status in patients with parkinson’s disease, Nutrition Research, 20 (5), 647-652, 2000.
  • 3. Du J., Cullen J.J., Buettner G.R., Ascorbic acid: Chemistry, biology and the treatment of cancer, Biochimica et Biophysica Acta, 1826, 443-457, 2012.
  • 4. Malinauskas A., Garjonyte R., Mazeikiene R., Jureviciute I., Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review, Talanta, 64, 121-129, 2004.
  • 5. Raoof J.B., Ojani R., Kiani A., Carbon paste electrode spiked with ferrocene carboxylic acid and its application to the electrocatalytic determination of ascorbic acid, J.Electroanal.Chem., 515,45-51, 2001.
  • 6. Luo X.L., Xu J.J., Zhao W., Chen H.Y., Ascorbic acid sensor based on ion-sensitive field-effect transistor modified with MnO2 nanoparticles, Anal.Chim.Acta., 512,57-61, 2004.
  • 7. Qian L., Gao Q., Song Y., Li Z., Yang X., Layer by layer assembled multilayer films of redox polymers for electrocatalytic oxidation of ascorbic acid, Sensors Actuators B: Chem., 107, 303-310, 2005.
  • 8. Sha Y., Qian L., Ma Y., Bai H., Yang X., Multilayer films of carbon nanotubes and redox polymer on screen printed carbon electrodes for electrocatalysis of ascorbic acid, Talanta, 70, 556-560, 2006.
  • 9. Ping J., Wu J., Ying Y., Simultaneous determination of ascorbic asid, dopamine and uric acid using hihgperformance screen–printed graphene electrode, Biosensors and Bioelectronics, 34 (1), 70-76, 2012.
  • 10. Hummers W.S., Offeman R.E., Preparation of graphitic oxide, J. Amer. Chem. Soc., 80 (6), 1339-1339, 1958.
  • 11. Balbaşı M., Şahin A., Symmetrical Supercapacitor Application with Low Activated Carbon Content, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (4), 683-692, 2015.
  • 12. Gençer G.M., Karadeniz S., Yurt Lambrecht F., Havıtçıoğlu H., Özkal S., Baskın H., The effects of plasma immersion ion implantation and deposition (PIII&D) process voltages on the morphology, phase formation and E. coli adhesion of Ag coatings obtained on the surface of Ti6Al4V orthopedic implant material in nitrogen plasma, Journal of the Faculty of Engineering and Architecture of Gazi University 32 (1), 231-241, 2017.
  • 13. Huang K.J., Wang L., Liu Y.J., Gan T., Liu Y.M., Wang L.L., Fan Y., Synthesis and electrochemical performances of layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hyroquinone, Electrochimica Acta, 107, 379-387, 2013.
  • 14. Huang K.J., Wang L., Li J., Liu Y., Electrochemical sensing based on layered MoS2–graphene composites, Sensors and Actuators B: Chemical, 178, 671-677, 2013.
  • 15. Wang X., Zhang F., Xia J., Wang Z., Bi S., Xia L., Li Y., Xia Y., Xia L., Modification of electrode surface with covalently functionalized graphene oxide by Ltyrosine for determination of dopamine, Journal of Electroanalytical Chemistry, 738, 203-208, 2015.
  • 16. Si P., Chen H., Kannan P., Kim D.H., Selective and sensitive determination of dopamine by composites of polypyrole and graphene modified electrodes, Analyst, 136, 5134-5138, 2011.
  • 17. Çalımlı A., Nanokil-polimer kompozitlerinin sentez ve karakterizasyonu, Ankara Üniversitesi BAP kesin raporu, 2080745001, 51-52, 2008.
  • 18. Ni Y., Wang P., Song H., Lin X., Kokot S, Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion– graphene biosensor, Analytica Chimica Acta, Volume 821, 34–40, 2014.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ