Çok amaçlı tek sıra tesis düzenleme probleminin çözümü için NSGA-II ve hedef programlama yaklaşımı

Tek sıra tesis düzenleme problemi, bölümlerin düz bir hat üzerinde yerleşiminin planlanması problemidir. Tek sıra tesis düzenleme probleminde, genellikle bölümler arası toplam taşıma maliyetlerini en küçüklemek hedeflenmektedir. Ancak, gerçek hayatta tesis düzenleme problemini tek bir amaçla ifade etmek mantıklı olmayacaktır. Bunun için nicel ve nitel amaçları ele alan çok amaçlı modeller üzerinde çalışılmaktadır. Bu çalışmada, toplam akış mesafesini en küçüklemeyi ve bölümler arası yakınlık skorlarını en büyüklemeyi hedefleyen çok amaçlı tek sıra tesis düzenleme problemi ele alınmıştır. Bu amaçlar, tek sıra tesis düzenleme problemi için ilk defa bu çalışmada dikkate alınmıştır. Problemin çözümü için, ağırlıklı hedef programlama yaklaşımı ve NSGA-II algoritması önerilmiştir

NSGA-II and goal programming approach for the multi-single row facility layout problem

Single row facility layout problem is the problem of arranging departments on a straight line. The main objective of the single row facility layout problem is to minimize the total material handling cost. However, it is not explanatory to use one objective. Hence, researchers pay more attention to model facility layout problems with qualitative and quantitative objectives. In this study, a weighted goal programming approach and a NSGA-II algorithm are proposed to solve multi-objective single row facility layout problem with the objectives of minimizing total flow distance and maximizing closeness rating scores. These objectives are taken into account for single row facility layout problem, for the first time, in this paper

___

  • 1. Drira A., Pierreval H., Hajri-Gabouj S., Facility layout problems: A survey, Annu. Rev. Control, 31 (2), 255- 267, 2007.
  • 2. Tompkins J.A., White J.A., Bozer Y.A., Tanchoco J.M., Facilities Planning, John Wiley & Sons, ABD, 2010.
  • 3. Amaral A.R.S., On the exact solution of a facility layout problem, Eur. J. Oper. Res., 173 (2), 508-518, 2006.
  • 4. Lenin N., Kumar M.S., Ravindran D., Islam M.N., A tabu search for multiobjective single row facility layout problem, Journal of Advanced Manufacturing Systems,13 (1), 17-40, 2014.
  • 5. Heragu S.S., Kusiak A., Machine layout problem in flexible manufacturing systems, Oper. Res., 36 (2), 258- 268, 1988.
  • 6. Simmons D.M., One-dimensional space allocation: An ordering algorithm, Oper. Res., 17 (5), 812-826, 1969.
  • 7. Picard J.C., Queyranne M., On the one-dimensional space allocation problem, Oper. Res., 29 (2), 371-391, 1981.
  • 8. Beghin-Picavet M., Hansen P., Deux problemes daffectation nonlineaires, RAIRO, Recherche Operationnelle, 16 (3), 263-276, 1982.
  • 9. Love R.F., Wong J.Y., On solving a one-dimensional space allocation problem with integer programming, INFOR,14 (2), 139-143, 1976.
  • 10. Heragu S.S., Kusiak A., Efficient models for the facility layout problem, Eur. J. Oper. Res., 53 (1), 1-13, 1991.
  • 11. Amaral A.R.S., A new lower bound for the single row facility layout problem, Discrete Appl. Math., 157 (1), 183-190, 2009.
  • 12. Amaral A.R.S., Letchford A.N., A polyhedral approach to the single row facility layout problem, Math. Program., 141 (1-2), 453-477, 2013.
  • 13. Hungerlander P., Rendl F., A computational study and survey of methods for the single-row facility layout problem, Computational Optimization and Applications, 55, 1-20, 2013.
  • 14. Kumar K.R., Hadjinicola G.C., Lin T.L., A heuristic for the single-row facility layout problem, Eur. J. Oper. Res., 87 (1), 65-73, 1995.
  • 15. Braglia M., Heuristics for single-row layout problems in flexible manufacturing systems, Production Planning & Control, 8, 558-567, 1997.
  • 16. Djellab H., Gourgand M., A new heuristic procedure for the single-row facility layout problem, Int. J. Computer Integr. Manuf., 14 (3), 270-280, 2001.
  • 17. Palubeckis G., Fast simulated annealing for single-row equidistant facility layout, Appl. Math. Comput., 263, 287-301, 2015.
  • 18. Kothari R., Ghosh D., Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods, Eur. J. Oper. Res., 224, 93- 100, 2013.
  • 19. Kothari R., Ghosh D., An efficient genetic algorithm for single row facility layout, Optimization Letters, 6 (2), 679-690, 2014.
  • 20. Kothari R., Ghosh D., A scatter search algorithm for the single row facility layout problem, Journal of Heuristics, 20 (2), 125-142, 2014.
  • 21. Solimanpur M., Vrat P., Shankar R., An ant algorithm for the single row layout problem in flexible manufacturing systems, Computers & Operations Research, 32 (3), 583-598, 2005.
  • 22. Kumar R.M.S., Asokan P., Kumanan S., An artificial immune system-based algorithm to solve linear and loop layout problems in flexible manufacturing systems, International Journal of Product Development, 10, 165- 179, 2010.
  • 23. Kothari R., Ghosh D., Path relinking for single row facility layout, Ahmedabad, Indian Institute of Management, 2012.
  • 24. Kunlei L., Chaoyong Z., Liang G., Xinyu S., Single row facility layout problem using an imperialist competitive algorithm, 41. International Conference on Computers & Industrial Engineering, 578-586, 2011.
  • 25. Ou-Yang C., Utamima A., Hybrid estimation of distribution algorithm for solving single row facility layout problem, Comput. Ind. Eng., 66, (1), 95-103, 2013.
  • 26. Keller B., Buscher U., Single row layout models, Eur. J. Oper. Res., 245 (3), 629-644, 2015.
  • 27. Şahin R., Türkbey O., A new hybrid heuristic algorithm for the multi objective facility layout problem, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (1), 119-130, 2010.
  • 28. Rosenblatt M.J., The facilities layout problem: a multigoal approach, Int. J. Prod. Res., 17 (4), 323-332, 1979.
  • 29. Na Z., Kelin X., Wei Q., Multi-objective combinatorial optimization of multi-product single-row layout, Electrical and Control Engineering (ICECE), 2010 International Conference on. IEEE, 1324-1327, 2010.
  • 30. Ertay T., Ruan D., Tuzkaya U.R., Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems, Information Sciences, 176, 237-262, 2006.
  • 31. Chen G.Y.H., Lo J.C., Dynamic facility layout with multi-objectives, Asia-Pacific Journal of Operational Research, 31 (4), 2014.
  • 32. Emami S., Nookabadi A.S., Managing a new multiobjective model for the dynamic facility layout problem, Int. J. Adv. Manuf. Technol., 68 (9), 2215-2228, 2013.
  • 33. Lenin N., Kumar M.S., Islam M., Ravindran D., Multiobjective optimization in single-row layout design using a genetic algorithm, Int. J. Adv. Manuf. Technol., 67 (5), 1777-1790, 2013.
  • 34. Malakooti B., Operations and Production Systems with Multiple Objectives, John Wiley & Sons, A.B.D., 2014.
  • 35. Deb K., Pratap A., Agarwal S., Meyarivan T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6 (2), 182-197, 2002.
  • 36. Srinivas N., Deb K., Multiobjective optimization using nondominated sorting in genetic algorithms, Evol. Comput., 2 (3), 221-248, 1995.
  • 37. Xu Z., Ming X.G., Zheng M., Li M., He L., Song W., Cross-trained workers scheduling for field service using improved NSGA-II, Int. J. Prod. Res., 53 (4), 1255- 1272, 2015.
  • 38. Fallah-Mehdipour E., Haddad O.B., Tabari M.M.R., Marino M.A., Extraction of decision alternatives in construction management projects: Application and adaptation of NSGA-II and MOPSO, Expert Syst. Appl., 39, 2794-2803, 2012.
  • 39. Chan F.T.S., Jha A., Tiwari M.K., Bi-objective optimization of three echelon supply chain involving truck selection and loading using NSGA-II with heuristics algorithm, Appl. Soft Comput., 38, 978-987, 2016.
  • 40. Mousavi S.M., Sadeghi J., Niaki S.T.A., A bi-objective inventory optimization model under inflation and discount using tuned Pareto-based algorithms: NSGAII, NRGA, and MOPSO, Appl. Soft Comput., 43, 57-72, 2016.
  • 41. Okay F.Y., Özdemir S., Improving Coverage in Wireless Sensor Networks Using Multiobjective Evolutionary Algorithms, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (2), 143-153, 2015.
  • 42. Dutta K.N., Sahu S., A multigoal heuristic for facilities design problems: MUGHAL, Int. J. Prod. Res., 20 (2), 147-154, 1982.
  • 43. Urban T.L., A multiple criteria model for the facilities layout problem, Int. J. Prod. Res., 25 (12), 1805-1812, 1987.
  • 44. Fortenberry J.C., Cox J.F., Multiple criteria approach to the facilities layout problem, Int. J. Prod. Res., 23 (4), 773-782, 1985.
  • 45. Suresh G., Sahu S., Multiobjective facility layout using simulated annealing, Int. J. Prod. Econ., 32 (2), 239-254, 1993.