Farklı geometride akış yönlendiriciler ve çarpan jet kullanarak yüksek ısı akılı bir yüzeyden olan ısı transferinin iyileştirilmesi

Bu çalışmada sabit ısı akılı yüzeyde ısı transferinin, çarpan akışkan jet ve farklı geometride akış yönlendiricilerin birlikte kullanılarak iyileştirilmesi sayısal olarak araştırılmıştır. Çalışmada, akış yönlendirici kullanılmayarak kanal içindeki akış ve ısı transferi farklı Reynolds sayıları ve kanal yüksekliğijet hidrolik çapı (H/Dh) oranları için incelenmiştir. Sonrasında kanal içine yerleştirilen iki adet silindirik, kare ve üçgen akış yönlendiricinin akışa ve ısı transferine etkisi; farklı akış yönlendirici-jet merkezi mesafeleri için incelenmiştir. Son aşamada ise dört adet üçgen akış yönlendirici kullanılarak, ikinci grup akış yönlendiricinin ısı transferine etkisi incelenmiştir. Sonuç olarak; çarpan akışkan jet ile farklı geometride akış yönlendiricilerin birlikte kullanılarak; ısı transferinde akış yönlendirici kullanılmaması durumuna göre %28'e kadar bir artış sağlanabildiği görülmüştür. Re sayısının artması ile ısı transferinin artış gösterdiği, kanal yüksekliğindeki azalmanın yerel Nu sayısında belirgin bir artışa sebep olmadığı, silindirik akış yönlendirici merkezi; yerel Nu sayısı L/Dh=1,4 değerinde maksimum değerine ulaştığı, en etkin ısı transferinin üçgen akış yönlendirici ile elde edildiği tespit edilmiştir. İkinci grup akış yönlendirici kullanılma durumunda ise, yerel olarak %36,1'lik bir artış sağlanabilmesine karşın plaka genelinde ısı transferinde önemli bir artış olmadığı tespit edilmiştir. Ayıca; modellemede kullanılan düşük Reynolds sayılı k-? türbülans modelinin sıcaklık dağılımını ve akış özelliklerini iyi şekilde temsil edebildiği görülmüştür

Improvement of heat transfer from high heat flux surfaces by using vortex promoters with different geometries and impinging jets

In this study; the enhancement of heat transfer from a surface with constant heat flux using an impinging jet and different shapes of vortex promoters was investigated numerically. Firstly, fluid flow and heat transfer in a channel were investigated for different Reynolds numbers, and ratio of channel height to nozzle hydraulic diameter (H/Dh), without using vortex promoters. Afterwards, effects of cylindrical, square and triangular vortex promoters on fluid flow and heat transfer for ratio of distance of vortex promoter to jet center to nozzle hydraulic diameter were investigated. In the last phase; effects of second group of vortex promoters were investigated on heat transfer and fluid flow. As a result; by using impinging jets and vortex promoters an increase of 28% on heat transfer from the surface can be observed according to the condition without vortex promoter. With increasing Reynolds number an increase on heat transfer was observed. Decreasing the channel height does not increase the heat transfer significantly. For the cylindrical vortex promoters maximum local Nusselt number is obtained at L/Dh=1.4. The most effective heat transfer is obtained with triangular vortex promoters. Using second group of vortex promoters can cause an increase of 36.1 % on heat transfer locally, but cannot cause a prominent increase on heat transfer along the target plate generally. Additionally, it is observed that the low Reynolds k-ɛ turbulent model can represent temperature variation and flow characteristic quite well

___

  • 1. Lin Z.H., Chou Y.J., Hung Y.H., Heat transfer behaviors of a confined slot jet impingement, International Journal of Heat and Mass Transfer, 49, 2760-2780, 1999.
  • 2. Katti V., Prabhu S.V., Heat transfer enhancement on a flat surface with axisymmetric detached ribs by normal impingement of circular air jet, International Journal of Heat and Fluid Flow, 29, 1279-1294, 2008.
  • 3. Nada S.A., Slot/slots air jet impinging cooling of a cylinder for different jets-cylinder configuration, Heat Mass Transfer, 43, 135-148, 2006.
  • 4. Fenot M., Doricnac E., Vullierme J., An Experimental Study on Hot Round Jets Impinging a Concave Surface, International Journal of Heat and Fluid Flow, 29, 945- 956, 2008.
  • 5. Dagtekin I., Oztop H., Heat transfer due to double laminar slot jets impingement onto an isothermal wall one side closed long duct, International Journal of Heat and Mass Transfer, 35, 65-75, 2007.
  • 6. Isman M. K., Pulat E., Etemoğlu A.B., Can M., Numerical Investigation of Turbulent Impinging Jet Cooling of a Constant Heat Flux Surface, Numerical Heat Transfer, 53, 1109-1132, 2008.
  • 7. Arguis E., Rady M.A., Nada S.A., A numerical investigation and parametric study of cooling an array of multiple protruding heat sources by a laminar slot air jet, International Journal of Heat and Fluid Flow, 28, 787-805, 2006.
  • 8. Mehryar R., Giovannini A., Twisted symmetry in multiple impingement jets at low Reynolds number, International Journal of Thermal Sciences, 77, 27-37, 2013.
  • 9. McGuinn A., Persoons T., O’donovan T., Murray D., Surface Heat Transfer from an Impinging Synthetic Air Jet, International Journal of Heat and Mass Transfer, 20, 1333-1338, 2005.
  • 10. Yan W.M., Liu H.C., Soong C.Y., Yang W.J., Experimental study of impinging heat transfer along ribroughened walls by using transient liquid crystal technique, Heat and Mass Transfer, 48, 2420-2428, 2005.
  • 11. Wang S.J., Morris G., Garimella S., Fitzgerald A., Improved prediction of flow field in submerged and confined ımpinging jets using the Reynolds stress model, International Journal of Heat and Mass Transfer, 42, 2260-2268, 2004.
  • 12. Pınarbaşı A., Pınar E., Akıllı H., İnce E., Shallow water experiments on flow past two identical square cylinders in tandem, European Journal of Mechanics B/Fluids, 49, 100-107, 2014.
  • 13. Kilic M., Çalışır T., Başkaya Ş, Experimental and numerical study of heat transfer from a heated flat plate in a rectangular channel with an impinging Jet, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39 (1), 329-344, 2017.
  • 14. Kilic M., Çalışır T., Başkaya Ş, Experimental and numerical investigation of vortex promoter effects on heat transfer from heated electronic components in a rectangular channel with an impinging jet, Heat Transfer Research, 48 (5), 435-463, 2017.
  • 15. Reodikar S.A., Meena H.C., Vinze R., Prabhu S.V., Influence of the orifice shape on the local heat transfer distribution and axis switching by compressible jets impinging on flat surface, International Journal of Thermal Sciences, 104, 208-224, 2016.
  • 16. Greco C.S., Castrillo C.M., Crispo T., Astarita T., Cardone, G., Investigation of impinging single and twin circular jets flow field, Experimental Thermal and Fluid Science, 74, 354-367, 2016.
  • 17. Sing N., Sivan R., Sotoa M., Faizal M., Ahmet M.R., Experimental Studies on parallel wavy channel heat exchangers with varying channel inclination angles, Experimental Thermal and Fluid Science, 75, 173-182, 2016.
  • 18. Ng Z.Y., Vo T., Hussam W.K., Sheard G.J., Twodimensional wake dynamics behind cylinders with triangular cross-section under incidence angle variation, Journal of Fluids Structures, 63, 302-324, 2016.
  • 19. Guan T., Zhang J., Shan Y., Convective heat transfer by a row of tab-excited impinging jets on a wedge-shape concave surface, International Journal of Thermal Sciences, 100, 37-53, 2015
  • 20. Teamah M.A., Dawood M.M., Shehata A., Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate, Experimental Thermal and Fluid Science, 74, 235-246, 2016.
  • 21. Manca O., Ricci D., Nardini S., Lorenzo G., Thermal and fluid dynamics behaviors of confined laminar impinging slot jets with nanofluids, International Communications in Heat and Mass Transfer, 70, 15-26, 2016.
  • 22. Sun B., Qu Y., Yang D., Heat transfer of Single Impinging jet with Cu Nanofluids, Applied Thermal Engineering, 102, 701-707, 2016.
  • 23. Calisir T., Caliskan S., Kilic M., Baskaya S., Numerical investigation of flow field on ribbed surfaces using impinging jets, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 119-130, 2017.
  • 24. Dogan A., Oney B., Experimental investigation of convection heat transfer from aluminum foam heat sinks, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (1), 71-78, 2014.
  • 25. Sertkaya A.A., Ateş A., Altınışık K., Dinçer K., Experimental and numerical analysis of one dimensional heat transfer on open cell aluminum foams, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (1), 149-159, 2015.
  • 26. Sertkaya A.A., Akbaba B., Experimental and numerical analysis of a two dimensional heat transfer on open cell aluminum foams, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (2), 435-448, 2016.
  • 27. Beitelmal A.H., Saad M.A., Patel C.D., The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet, International Journal of Heat and Fluid Flow, 21, 156–163, 2000.
  • 28. Kilic M., Çarpmalı Akışkan Jetlerle Kanal İçine Yerleştirilmiş Elemanlardan Olan Konveksiyonla Isı Transferinin Sayısal ve Deneysel Olarak İncelenmesi, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2013.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ