Damıtma kolonu tasarımı: Dolgulu kolon tasarım modellerinin karşılaştırılması

Şekil ve dış yüzey alanı itibarı ile farklı kütle iletimi etkinliğine sahip çeşitli geometrik yapıdaki raflar (tepsiler) ve dolgu maddeleri ayırma aracı olarak damıtma kolonlarında kullanılmaktadır. Uygun bir damıtma kolonu seçimine dönük stratejik tasarım etkenleri geniş literatür veri topluluğu çerçevesinde irdelenmiş ve ilgili temas araçlarının işletme özellikleri karşılaştırılmıştır. Tasarım uygulamalarında tanımlanması gereken en belirleyici etkenler ise fazlararası kütle transfer alanı, ayırma etkinliği, basınç düşmesi ve buhar kapasitesidir. Bu temel tasarım nicelikleri ışığında, tepsili tertibatlar ile gelişigüzel yerleştirilmiş ve düzgün istiflenmiş dolgulara ilişkin genel tasarım modelleri tartışılmıştır. Genellikle, değerlendirme kapsamına giren dolgulu kolon tasarım modelleri film veya penetrasyon teorisine dayanır. Bu bağlamda, dolgulu kolon tasarımına ilişkin en çok kullanılan modellerin hesapsal tahminleri karşılaştırılmıştır. Burada konulan ana hedef ise, dolgulu kolon tasarım modellerinin güvenirlilik seviyelerinin tanımlanmasıdır. Bu genel amaçlı tasarım yaklaşımları ilgili tablolarda gösterilmiştir

Design of a distillation column: Comparison of packed column design models

Various geometrically constructed packings and plates are commonly used as separating tools in distillation columns since they possess different mass transfer efficiency due to their shape and surface properties. The strategic design factors required for the selection of a proper distillation column have been analyzed on the basis of a large literature data bank and the operating properties of relevant contacting tools have been compared. In the design practice, the mass transfer interfacial area, the efficiency, the pressure drop and the vapor capacity are the most promising factors that need to be characterized. In view of these design factors, the common design models covering plate devices, and random and structured packings have been discussed. The evaluated packed column design models are generally dependent on the film or penetration theory. In this regard, the predictive performances of the most useful models for the packed column design have been compared. Here, the main goal is placed on the description of the confidence levels of packed column design models. These common design approaches are presented in the relevant tables

___

  • 1. King C.J., Separation Processes, 2nd edition, McGrawHill, New York, USA, 1980.
  • 2. Kister H.Z., Distillation Design, McGraw-Hill, New York, USA, 1992.
  • 3. Treybal R., Mass Transfer Operations, McGraw-Hill, New York, USA, 1980.
  • 4. Seader J.D., Henley E.J., Separation Process Principles, John Wiley & Sons, New York, USA, 1998.
  • 5. Clay H.A., Clark J.W., Munro B.L., Which packing for which job?, Chem. Eng. Prog., 62 (1), 51-58, 1966.
  • 6. Bolles W.L., Fair J.R., Improved mass-transfer model enhances packed-column design, Chem. Eng., 89 (14), 109-116, 1982.
  • 7. Billet R., Packed Towers in Processing and Environmental Technology, VCH, Germany, 1995.
  • 8. Mell R.T., Spekuljak Z., Optimum design of packed distillation towers, Ind. Eng. Chem. Proc. Des. Dev., 22 (2), 230-236, 1983.
  • 9. Wagner I., Stichlmair J., Fair J.R., Mass-transfer in beds of modern, high-efficiency random packings, Ind. Eng. Chem. Res., 36 (1), 227-237, 1997.
  • 10. Eckert J.S., Foote E.H., Walter L.F., What affects packings performance?, Chem. Eng. Prog., 62 (1), 59- 67, 1966.
  • 11. Chopey N.P., Handbook of Chemical Engineering Calculations, 3rd edition, McGraw-Hill, New York, USA, 2004.
  • 12. Xu Z.P., Afacan A., Chuang K.T., Efficiency of dualflow trays in distillation, Can. J. Chem. Eng., 72 (4), 607–613, 1994.
  • 13. Garcia J.A., Fair J.R., A fundamental model for the prediction of distillation sieve tray efficiency. 1. Database development and 2. Model development and validation, Ind. Eng. Chem. Res., 39 (6), 1809–1825, 2000.
  • 14. Prado M., Fair J.R., Fundamental model for the prediction of sieve tray efficiency, Ind. Eng. Chem. Res., 29 (6), 1031–1042, 1990.
  • 15. Domingues T.L., Secchi A.R., Mendes T.F., Overall efficiency evaluation of commercial distillation columns with valve and dualflow trays, AIChE J., 56 (9), 2323-2330, 2010.
  • 16. Noriler D., Barros A.A.C., Maciel M.R.W., Meier, H.F., Simultaneous momentum, mass, and energy transfer analysis of a distillation sieve tray using CFD techniques: prediction of efficiencies, Ind. Eng. Chem. Res., 49 (14), 6599–6611, 2010.
  • 17. Taylor R., Distillation modeling after all these years: a review of the state of art, Ind. Eng. Chem. Res., 46 (13), 4349-4357, 2007.
  • 18. Chen L., Repke J.U., Wozny G., Wang S., Exploring the essence of three-phase packed distillation: substantial mass transfer computation, Ind. Eng. Chem. Res., 49 (2), 822–837, 2010.
  • 19. Gualito J.J., Cerino F.J., Cardenas J.C., Rocha J.A., Design method for distillation columns filled with metallic, ceramic, or plastic structured packings, Ind. Eng. Chem. Res., 36 (5), 1747-1757, 1997.
  • 20. Nguyen N., Demirel Y., Retrofit of distillation columns in biodiesel production plants, Energy, 35 (4), 1625– 1632, 2010.
  • 21. Bravo J.L., Rocha J.A., Fair J.R., A comprehensive model in the performance of columns containing structured packings: distillation and absorption, Inst. Chem. Eng. Symp. Ser., London, 128, A507, 1992.
  • 22. Fair J.R., Bravo J.L., Prediction of mass transfer efficiencies and pressure drop for structured tower packings in vapor/liquid service, Inst. Chem. Eng. Symp. Ser., London, 104, A183, 1987.
  • 23. Rukovena F., Koshy D.T., Packed distillation tower hydraulic design method and mechanical considerations, Ind. Eng. Chem. Res., 32 (10), 2400- 2407, 1993.
  • 24. Bravo J.L., Fair J.R., Generalized correlation for mass transfer in packed distillation columns, Ind. Eng. Chem. Proc. Des. Dev., 21 (1), 162-170, 1982.
  • 25. Bravo J.L., Rocha J.A., Fair J.R., Mass transfer in gauze packings, Hydrocarbon Proc., 64 (1), 91-98, 1985.
  • 26. Eckert J.S., Trays and packings: selecting the proper distillation column packing, Chem. Eng. Prog., 66 (3), 39-44, 1970.
  • 27. Zuiderweg F.J., Harmens A., Influence of surface phenomena on the performance of distillation columns, Chem. Eng. Sci., 9 (2-3), 89-103, 1958.
  • 28. Norman W.S., Absorption, Distillation and Cooling Towers, Longmans, London, England, 1961.
  • 29. Berg J.C., Interfacial Phenomena in Fluid Phase Separation Processes. Recent Developments in Separation Science, 2nd edition, CRC Press, Cleveland, USA, 1972.
  • 30. Stichlmair J., Bravo, J.L., Fair, J.R., General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns, Gas Sep. Purif., 3 (1), 19-28, 1989.
  • 31. Vidwans A.D., Sharma M.M., Gas-side mass transfer coefficient in packed columns, Chem. Eng. Sci., 22 (4), 673-684, 1967.
  • 32. Gunn D.J., Liquid distribution in packed columns, Chem. Eng. Sci., 47 (8), 2095-2097, 1992.
  • 33. Gunn D.J., Al-Saffar, H.B.S.A., Liquid distribution in packed columns, Chem. Eng. Sci., 48 (22), 3845-3854, 1993.
  • 34. Kouri R.J., Sohlo J., Liquid and gas flow patterns in random packings, Chem. Eng. J., 61 (2), 95-105, 1996.
  • 35. Pizzo S.M., Moraes D., Fernandes F.A.N., Kobayasi M.S., Pazini, R.J., Analysis of liquid distribution in a packed column on a pilot scale, Ind. Eng. Chem. Res., 37 (7), 2844-2849, 1998.
  • 36. Silvey F.C., Keller G.J., Testing on a commercial scale, Chem. Eng. Prog., 62 (1), 68-74, 1966.
  • 37. Shariat A., Kunesh J.G., Packing efficiency testing on a commercial scale with good (and not so good) reflux distribution, Ind. Eng. Chem. Res., 34 (4), 1273-1279, 1995.
  • 38. Fitz C.W., Kunesh J.G., Shariat A., Performance of structured packing in a commercial-scale column at pressures of 0.002-27.6 bar, Ind. Eng. Chem. Res., 38 (2), 512-518, 1999.
  • 39. Onda K., Takeuchi H., Okumoto Y., Gas absorption with chemical reaction in packed columns, J. Chem. Eng. Jpn., 1 (1), 56-62, 1968.
  • 40. Yoshida F., Koyanagi T., Mass transfer and effective interfacial areas in packed columns, AIChE J., 8 (3), 309-316, 1962.
  • 41. Senol A., Mass transfer efficiency of randomly-packed column: modeling considerations, Chem. Eng. Process., 40 (1), 41-48, 2001.
  • 42. Senol A., Optimum mass transfer area in a pilot plant packed distillation column, J. Chem. Eng. Jpn., 39 (12), 1265-1275, 2006.
  • 43. Hanley B., Dunbobbin B., Bennett D., A unified model for countercurrent vapor/ liquid packed columns: 1. Pressure drop, Ind. Eng. Chem. Res., 33 (5), 1208-1221, 1994.
  • 44. Hanley B., Dunbobbin B., Bennett D., A unified model for countercurrent vapor/ liquid packed columns: 2. Equations for the mass-transfer coefficients, masstransfer area, the HETP, and the dynamic liquid holdup, Ind. Eng. Chem. Res., 33 (5), 1222-1230, 1994b.
  • 45. Puranik S.S., Vogelpohl A., Effective interfacial area in packed columns, Chem. Eng. Sci., 29 (2), 501-507, 1974.
  • 46. Brito M.H, von Stockar U., Bangerter M.A., Bomio P., Laso M., Effective mass-transfer area in a pilot plant column equipped with structured packings and with ceramic rings, Ind. Eng. Chem. Res., 33 (3), 647-656, 1994.
  • 47. Shulman H.L., Ulrich C.F., Proulx A.Z., Zimmermann, J.O., Performance of packed columns: II. Wetted and effective interfacial areas, gas- and liquid-phase mass transfer rates, AIChE J., 1 (2), 253-258, 1955.
  • 48. Zech J.B., Mersmann A.B., Liquid flow and liquid phase mass transfer in irrigated packed columns, Inst. Chem. Eng. Symp. Ser., London, 56, 25/39, 1979.
  • 49. Shi M., Mersmann G., Effective interfacial areas in packed columns, Ger. Chem. Eng., 8, 87-96, 1985.
  • 50. Schultes M., Influence of Effective Interfacial Area on Mass Transfer in Random Packed Columns, Ph.D. Thesis, Universitât Bochum, Germany, 1990.
  • 51. Billet R., Schultes M., Prediction of mass transfer in columns with dumped and arranged packings: Updated summary of the calculation method of Billet and Schultes, Chem. Eng. Res. Des., 77 (6), 498−504, 1999.
  • 52. Hughmark G.A., Packed column efficiency fundamentals, Ind. Eng. Chem. Fundam., 25 (3), 405- 409, 1986.
  • 53. Otake T., Okada K., Liquid hold-up in packed towers: operating hold-up without gas flow, Kagaku Kogaku, 17 (5), 176-184, 1953.
  • 54. Buchanan J.E., Holdup in irrigated ring-packed towers below the looding point, Ind. Eng. Chem. Fundam., 6 (3), 400-407, 1967.
  • 55. Buchanan J.E., Pressure gradient and holdup in irrigated packed towers, Ind. Eng. Chem. Fundam., 8 (3), 502- 511, 1969.
  • 56. Bemer G.G., Kalis G.A.J., A new method to predict hold-up and pressure drop in packed columns, Trans. Inst. Chem. Eng., 56, 200-204, 1978.
  • 57. Leva M., Tower Packing and Packed Tower Design, 2nd edition., U.S. Stoneware Co., Akron, Ohio, USA, 1953.
  • 58. Norton Company, Design Information for Packed Towers, Bulletin DC-11, Akron, Ohio, USA, 1976.
  • 59. Sherwood T.K., Shipley G.H., Holloway F.A.L., Flooding velocities in packed columns, Ind. Eng. Chem., 30 (7), 765-769, 1938.
  • 60. Lobo W.E., Friend L., Hashmall, F., Zenz, F.A., Limiting capacity of dumped tower packings, Trans. Am. Inst. Chem Engrs., 41 (6), 693-710, 1945.
  • 61. Zenz Z.A., What every engineer should know about packed tower operations, Chem. Eng., 60 (8), 176–184, 1953.
  • 62. Chen N.H., Equation for flooding rate in packed towers, Ind. Eng. Chem., 53 (1), 6, 1961.
  • 63. Nguyen H.X., Computer program expedites packed tower design, Chem. Eng., 85 (26), 181-184, 1978.
  • 64. Kessler D., Wankat P., Correlations for column parameters, Chem. Eng., 95 (13), 72-74, 1988.
  • 65. Şenol A., Dolgulu Bir Kolonda Buhar Hızına Bağlı Olarak Performans Analizi, Doktora tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 1991.
  • 66. Şenol A., Dolgulu bir kolonun performans analizi: orifizmetre kalibrasyonu, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 9 (1), 115-123, 2003.
  • 67. Rocha J.A., Bravo J.L., Fair, J.R., Distillation columns containing structured packings. A comprehensive model for their performance: 1. Hydraulic models, Ind. Eng. Chem. Res., 32 (4), 641-651, 1993.
  • 68. Rocha J.A., Bravo J.L., Fair J.R., Distillation columns containing structured packings. A comprehensive model for their performance: 2. Mass-transfer model, Ind. Eng. Chem. Res., 35 (5), 1660-1667, 1996.
  • 69. Fair J.R., Bravo J.L., Distillation columns containing structured packings, Chem. Eng. Prog., 86 (1), 19-29, 1990.
  • 70. Li H.L., Ju Y.L., Li L.J., Xu, D.G., Separation of isotope 13C using high-performance structured packing, Chem. Eng. Process., 49 (3), 255–261, 2010.
  • 71. Lipnizki F., Fied R.W., Mass transfer performance for hollow fiber modules with shell-side axial feed flow: using an engineering approach to develop a framework, J. Membr. Sci., 193 (2), 195–208, 2001.
  • 72. Spiegel L., Meier W., Correlations of the performance characteristics of the various Mellapak types: capacity, pressure drop, efficiency, Inst. Chem. Eng. Symp. Ser., London, 104, A203, 1987.
  • 73. Spiegel L., Meier W., A generalized pressure drop model for structured packings, Inst. Chem. Eng. Symp. Ser., London, 128, B85, 1992.
  • 74. Cussler E.L., Non-selective membranes for separations, J. Chem. Technol. Biotechnol., 78 (2-3), 98–102, 2003.
  • 75. Yang D., Martinez R., Fayyaz-Najafi B., Wright R., Light hydrocarbon distillation using hollow fibers as structured packings, J. Membr. Sci., 362 (1), 86–96, 2010.
  • 76. Robbins L.A., Improve pressure drop prediction with a new correlation, Chem. Eng. Prog., 87 (5), 87-90, 1991.
  • 77. Farkas T., Czuczai B., Rev E., Lelkes Z., New MINLP model and modified outer approximation algorithm for distillation column synthesis, Ind. Eng. Chem. Res., 47 (9), 3088-3103, 2008.
  • 78. Spiegel L., Meier W., Distillation columns with structured packings in the next decade, Chem. Eng. Res. Des., 81 (1), 39–47, 2003.
  • 79. Zhang G. Gussle E.L., Distillation in hollow fibers, AICHE J., 49 (9), 2344-2351, 2003.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ