AISI 304 östenitik paslanmaz çeliklerin farklı kesme parametreleri ile tornalama işleminden sonra oluşan kalıcı gerilmelerin araştırılması

Kullanım alanlarına göre istenen mekanik ve kimyasal özelliklerin sağlanması için paslanmaz çeliklerin bileşimlerinde yapılan değişiklikler, paslanmaz çeliklerin işlenebilirliğini etkilemektedir. Bütün üretim işlemleri (ısıl işlem, talaşlı ve talaşsız imalat, kimyasal işlemler gibi) makine parçaları üzerinde kalıcı gerilmeler oluşturur. Özellikle talaş kaldırma yöntemlerine bağlı olarak malzeme üzerinde gerilmeler oluşmaktadır. Bu gerilmeler, makine elamanları üzerinde yorulma dayanımını azaltacak ve boyutsal değişikliklere yol açabilecek zararlı etkilere de neden olabilir. Bu nedenle makine elamanlarındaki kalıcı gerilme değerlerinin bilinmesi gerekmektedir. Bu araştırmada, AISI 304 östenitik paslanmaz çelik malzeme değişik kesme parametreleri ile işlendikten sonra, işlemeye bağlı olarak bünyesinde nasıl bir kalıcı gerilme oluştuğunu belirlemek hedeflenmiştir. AISI 304 çeliğinden 61 mm çapında, 250 mm boyunda 31 adet deney numunesi hazırlanmış ve değişik kesme parametrelerinde CNC torna tezgâhında işlenmiştir. Daha sonra deney numuneleri üzerinde oluşan kalıcı gerilme, katman kaldırma yöntemi kullanılarak tespit edilmiş ve en uygun işleme parametreleri belirlenmiştir. Deney numunelerinin tornalama işlemi sonunda yüzeylerde maksimum -1876.69 MPa ile -136.71 MPa’lık basma kalıcı gerilmelerinin oluştuğu tespit edilmiştir. Yüzeydeki basma kalıcı gerilmelerinin, katman kaldırılması ile 0.0465 mm derinlikten sonra çekme kalıcı gerilmelerine yöneldiği tespit edilmiştir.

A study on residual stresses formed on AISI 304 austenitic stainless steels when machined with different cutting parameters

Changes made in the composition of stainless steels so as to provide the mechanical and chemical properties desired according to the fields of application affect also their machining. All production processes such as heat treatment, production with or without machining, and chemical processes create residual stresses on the machine parts. Stress on materials occurs due to especially the methods of machining. These stresses may as well render harmful effects that may cause a decrease in the fatigue strength of the machine elements, and eventually dimensional changes. Therefore, it is necessary to know the residual stress values on machine elements. This study aims to determine the residual stress, depending on the process, occurring on the AISI 304 austenitic stainless steel material after it is processed under various cutting conditions. Thirty-one test specimens, of AISI 304 steel, with a diameter of 61 mm and 250 mm length were prepared and machined in CNC lathes with different cutting conditions. Later on, using “layer removal” method residual stresses on the specimens were found out, and the best processing conditions determined. A maximum of -1876.69 MPa and -136.71 MPa compressive residual stresses on the surfaces have been found after the turning process of the test specimens. The compressive residual stresses on the surface, upon layer removal, turn to be tensile residual stresses 0.0465mm beneath the surface.

___

  • 1. Sandvik Coromant Co. Inc., Modern Metal Cutting-A Practical Handbook, Sweden, (1997).
  • 2. Bahadur, A., Kumar, B.R., Chowdhury, G.S, “Evaluation Of Changes İn X-Ray Elastic Contants And Residual Stress As A Fuction Of Cold Rolling Of Austenitic Steels”, Materials Science and Techonology, V20, 3, (2004),p.,387-392.
  • 3. J.C. Outeiro, A.M. Dias, J.L. Lebrun, V.P. Astakhov, Machining residual stresses in AISI 316L steel and their correlation with the cutting parameters, Machining Science and Technology, 6 (2) (2002) 251–270.
  • 4. Korkut, İ., Kasap, M., Çiftci, M., Şeker, U., “Determination Of Optimum Cutting Parameters During Machining Of AISI 304 Austenitic Stainless Stell” Materials&Desing,V25, 4,(2004),p.,303-305
  • 5. P. Dahlman, F. Gunnberg, M. Jacobson, The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning, J. Mater. Proc. Tech., 147 (2004) 181–184.
  • 6. J. Hua, X. Cheng, V. Bedekar, R. Shivpuri, Y. Matsumoto, F. Hashimoto, T.R. Watkins, Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry, Mater. Sci. Eng., A 394 (2005) 238–248.
  • 7. J. Hua, R. Shivpuri, D. Umbrello, Investigation of cutting conditions and cutting edge preparations for enhanced compressive subsurface residual stress in the hard turning of bearing steel, J. Mater. Proc. Tech. 171 (2) (2006) 180–187.
  • 8. D. Umbrello, FE—analysis of machining processes: innovative experimental techniques for results assessing, Ph.D. Thesis, Mechanical Engineering, University of Calabria (February 2005).
  • 9. D. Ulutan, B.E. Alaca, I.Lazoğlu, Analytical modelling of residual stresses in machining, Journal of Materials Processing Technology 183 (2007), p., 77-87
  • 10. D. Umbrello, G. Ambrogio, L.Filice, R. Shivpuri, An ANN approach the desired cutting conditions during hard turning, Journal of Materials Processing Technology 189 (2007), p., 143-152
  • 11. J.C. Outerio, D.Umbrello, R.M.Saoubi, Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel, Machine Tools & Manu Facture, 46 (2006), p., 1786-1794
  • 12. M.N.A. Nasr, E.-G. Ng., M.A. Elbestawi, Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L, Machine Tools & Manu Facture, 47 (2007), p., 401-411
  • 13. F. Valiorgue, J.Rech, H. Hamdi, P. Gilles, J.M. Bergheau, A new approach for the modelling of residual stresses induced by turning of 316L, Journal of Materials Processing Technology (2007)
  • 14. F. Gunnberg, M. Escursell, M. Jacobson, The influence of cutting parameters on residual topography during hard turning of 18 MnCr5 case carburised steel, Journal of Materials Processing Technology, 174 (2006), p.,82-90
  • 15. Ship-Peng Lo, “An Analysis Of Cutting Under Different Rake Angles Using The Finite Element Method”, Journal of Materials Processing Technology 105 (2000), p., 143-151
  • 16. R. Liu, Y.B. Guo, “Finite Element Analysis Of The Effect Of Sequential Cuts And Tool-Chip Friction On Residual Stresses İn A Machined Layer”, International Journal of Mechanical Sciences 42, (2000), p.1069–1086.
  • 17. Natarajan, R., Jeelani, S., “Residual Stresses In Machining Using Finete Element Method”,Computers In Engineering, Computer Software And Applications ASME, New York, (1983), 3, P.,19-20
  • 18. Bray, D. E., Pathak, N., Srınıvasan, M. N., “Residual Stress Mapping İn A Steam Turbine Disk Using The LCR Ultrasonic Technique”, Material Evaluation, (1996).
  • 19. Fetullayev, E. K.,"Talaş Kaldırma Yöntemi İle Üretilen Vidalı Elemanlara Yüzey Katında Oluşan Artık Gerilmelerin Vida Elemanlarına Etkisi”, Uluslararası Makine Tasarımı ve İmalat Kongresi, ODTÜ, ANKARA, (1998).
  • 20. Kasap, M., AISI 304 Östenitik Paslanmaz Çeliklerin İşlenebilirliğinde En Uygun Kesme Parametrelerin ve İşleme Şartlarının Deneysel Olarak Araştırılması, Yüksek Lisans Tezi,Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, (2001).
  • 21. Belejchak, P., “Machining Stainless Steel”, Advanced Materials & Processes, (1997), p 23- 25.
  • 22. Kafkas, F., Katman Kaldırma Tekniğine Dayalı Olarak Kalıcı Gerilmelerin Ölçülmesini Sağlayan Bilgisayarlı Ölçme Cihazının Tasarımı Ve İmalatı, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, (2001).
  • 23. Fetullayev, E. K.,"Vidalarda Meydana Gelen Artık Gerilmelerin Teknolojik Faktöre Bağlı Olarak Tayin Edilmesi”, 7. Uluslararası Makine Tasarımı ve İmalat Kongresi, ODTÜ, ANKARA, (1996).
  • 24. Marshall, C.W., Maringer, R.E., Dimensional Instanbility On Introduction, Pergamon Press Ltd., UK.(1977), p. 139-163., p. 342-395.
  • 25. Shet,C, Deng, X., “Residual Stresses And Strains In Orthogonal Metal Cutting”, International Journal of Machine Tools & Manufacture V 43, (2003), p. 573–587
  • 26. Zone-Ching Lin, Wun-Ling Lai, H.Y. Lin, C.R. Liu, “The Study Of Ultra-Precision Machining And Residual Stress For Nip Alloy With Different Cutting Speeds And Depth Of Cut”, Journal of Materials Processing Technology, V97, (2000), p.200-210.
  • 27. Lin, Z.C., Lin, Y.Y., Liu, C.R., “Effect Of Thermal Load And Mechanical Load On The Residual Stress Of A Machined Workpiece”, Int. J. Mech. Sci. 33 (4), (1991), p. 263–278.
  • 28. Jeffrey D. Thiele, Shreyes N. Melkote, Roberta A. Peascoe, Thomas R. Watkins, “Effect Of Cutting-Edge Geometry And Workpiece Hardness On Surface Residual Stresses İn Finish Hard Turning Of AISI 52100 Steel”, Journal of Manufacturing Science and Engineering, Vol. 122, (2000), p.642-649.
  • 29. Lin, Z.C., Lai, W.L., Lin H.Y., Liu, C.R., “Residual Stres With Different Tool Flank Wear Lenghts İn The Ultra Precision Machining Of Ni- P Alloys, Journal of Materials Processing Technology, V 65, (1997), p.,116-126.
  • 30. Lin, Z.C., Lin, Y.Y., “A Study Of Oblique Cutting For Different Low Cutting Speeds”, Journal of Materials Processing Technology, V 115, (2001), p., 313-325.
  • 31. Lin, Z.C., Yarng, Y.D, “ Three Dimensional Cutting Process Analysis with Different Cutting Velocities”, Journal of Materials Processing Technology, V 70, (1997), p.22-33.
  • 32. Henriksen, E. K., “Residual Stress In Machined Surfaces”, Transactions ASME Journal Of Engineering for İndustry, Vol. 73, (1951), p. 69-76.
  • 33. Liu, C.R., Barash, M.M., “Variables governing patterns of mechanical residual stress in a machined surface”,. Transactions of the ASME, Journal of Engineering for Industry V 104,(1982), p. 257–264.
  • 34. Leskovar, P. And Peklenik, J., “Influence Affecting Surface Integrity In TheCutting Process”, Ann. CIRP, (1981), p. 245-248.
  • 35. Sasahara, H., Obikawa, T., Shirakshi, T., “Prediction Model Of Surface Residual Stress Within A Machined Surface By Combining Two Orthogonal Plane Models”, Journal Of Machine Tools And Manufacture, V.,44, 7-8, (2004), p., 815-822
  • 36. M.H. El-Axir, “A Method Of Modeling Residual Stress Distribution İn Turning For Different Materials”, International Journal of Machine Tools & Manufacture 42,(2002), p.,1055–1063.
  • 37. H., Sasahara “The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel,”, Journal Of Machine Tools And Manufacture, V.,45, (2005), p., 131-136.