Strain Dependent Electronic Properties of Hexagonal Monolayer Boron Phosphide with GPAW using GLLB-SC and PBE

Strain Dependent Electronic Properties of Hexagonal Monolayer Boron Phosphide with GPAW using GLLB-SC and PBE

The electronic properties of the hexagonal Boron Phosphide (h-BP) monolayer have been investigated by first-principles calculations. The electronic band structure of the h-BP monolayer has been calculated using GPAW with PBE and GLLB-SC exchange correlations (XCs). The energy band gaps of the h-BP monolayer are found to be 0.89 eV and 1.05 eV for PBE and GLLB-SC, respectively. It is shown that GLLB-SC in calculations as XC ensures a more accurate energy band gap than the PBE. As well as the electronic calculations of the unstrained h-BP monolayer, the strain calculations are performed between +5 and -5 %. The strain in the h-BP monolayer changed the energy band gap between 0.78 eV and 1.24 eV for GLLB-SC and between 0.66 eV and 1 eV for PBE. In this applied strain range the studied structure shows the direct band gap semiconductor behavior.

___

  • Reference1 Oughaddou, H., Enriquez, H., Tchalala, M. R., Yildirim, H., Mayne, A. J., Bendounan, A., Dujardin, G., Ali, M. A., Kara, A. (2015). Silicene, a promising new 2D material. Progress in Surface Science, 90(1), 46-83.
  • Reference2 Li, L., Lu, S. Z., Pan, J., Qin, Z., Wang, Y. Q., Wang, Y., Cao, G. Y., Du, S., Gao, H. J. (2014). Buckled germanene formation on Pt (111). Advanced Materials, 26(28), 4820-4824.
  • Reference3 Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J. E., Sumanasekera, G., Jasinski, J. B. (2017). Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Materials and Applications, 1(1), 1-13.
  • Reference4 Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., Kis, A. (2017). 2D transition metal dichalcogenides. Nature Reviews Materials, 2(8), 1-15.
  • Reference5 Zhang, K., Feng, Y., Wang, F., Yang, Z., Wang, J. (2017). Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. Journal of Materials Chemistry C, 5(46), 11992-12022.
  • Reference6 Wang, S. F., Wu, X. J. (2015). First-principles study on electronic and optical properties of graphene-like boron phosphide sheets. Chinese Journal of Chemical Physics, 28(5), 588.
  • Reference7 Varley, J. B., Miglio, A., Ha, V. A., van Setten, M. J., Rignanese, G. M., Hautier, G. (2017). High-throughput design of non-oxide p-type transparent conducting materials: data mining, search strategy, and identification of boron phosphide. Reference8 Xie, M., Zhang, S., Cai, B., Zhu, Z., Zou, Y., Zeng, H. (2016). Two-dimensional BX (X= P, As, Sb) semiconductors with mobilities approaching graphene. Nanoscale, 8(27), 13407-13413.
  • Reference9 Chen, Y., Zhang, X., Qin, J., & Liu, R. (2021). High-throughput screening of single metal atom anchored on N-doped boron phosphide for N 2 reduction. Nanoscale, 13(31), 13437-13450.
  • Reference10 Obeid, M. M., Jappor, H. R., Al-Marzoki, K., Hoat, D. M., Vu, T. V., Edrees, S. J., Yaseen, Z. M., Shukur, M. M. (2019). Electronic and magnetic properties of single-layer boron phosphide associated with materials processing defects. Computational Materials Science, 170, 109201.
  • Reference11 Galicia-Hernandez, J. M., Guerrero-Sanchez, J., Ponce-Perez, R., Fernandez-Escamilla, H. N., Cocoletzi, G. H., & Takeuchi, N. (2022). Self-energy corrected band-gap tuning induced by strain in the hexagonal boron phosphide monolayer. Computational Materials Science, 203, 111144. Reference12 Gritsenko, O., van Leeuwen, R., van Lenthe, E., Baerends, E. J. (1995). Self-consistent approximation to the Kohn-Sham exchange potential. Physical Review A, 51(3), 1944.
  • Reference13 Castelli, I. E., Hüser, F., Pandey, M., Li, H., Thygesen, K. S., Seger, B., Jain, A., Persson, K. A. Ceder, G., Jacobsen, K. W. (2015). New light‐harvesting materials using accurate and efficient bandgap calculations. Advanced Energy Materials, 5(2), 1400915.
  • Reference14 Yazdanmehr, M., Asadabadi, S. J., Nourmohammadi, A., Ghasemzadeh, M., Rezvanian, M. (2012). Electronic structure and bandgap of γ-Al2O3 compound using mBJ exchange potential. Nanoscale research letters, 7(1), 1-10.
  • Reference15 Tran, F., Blaha, P. (2017). Importance of the kinetic energy density for band gap calculations in solids with density functional theory. The Journal of Physical Chemistry A, 121(17), 3318-3325.
  • Reference16 Tran, F., Doumont, J., Kalantari, L., Blaha, P., Rauch, T., Borlido, P., Botti, S., Marques, M. A. L. Patra, A., Jana, S., Samal, P. (2021). Bandgap of two-dimensional materials: Thorough assessment of modern exchange–correlation functionals. The Journal of Chemical Physics, 155(10), 104103.
  • Reference17 Ullah, S., Denis, P. A., Menezes, M. G., Sato, F. (2019). Tunable optoelectronic properties in h-BP/h-BAs bilayers: the effect of an external electrical field. Applied Surface Science, 493, 308-319.
  • Reference18 Luo, Z., Ma, Y., Yang, X., Lv, B., Gao, Z., Ding, Z., Liu, X. (2020). Native Point Defects in Monolayer Hexagonal Boron Phosphide from First Principles. Journal of Electronic Materials, 49(10), 5782-5789.
  • Reference19 Naumis, G. G., Barraza-Lopez, S., Oliva-Leyva, M., Terrones, H. (2017). Electronic and optical properties of strained graphene and other strained 2D materials: a review. Reports on Progress in Physics, 80(9), 096501.
  • Reference20 Li, F. Q., Zhang, Y., Zhang, S. L. (2021). Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study. Nanomaterials, 11(6), 1395.
  • Reference21 Enkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Glinsvad, Haikola, V., Hansen, H. A. Kristoffersen, H. H., Kuisma, M., Larsen, A. H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P. G., Ojanen, J., Olsen, T., Petzold, V., Romero, N. A., Stausholm-Møller, J., Strange, M., Tritsaris, G. A., Vanin, M., Walter, M., Hammer, Häkkinen, V. H., Madsen, G. K. H., Nieminen, R. M., Nørskov, J. K., Puska, M., Rantala, T. T., Schiøtz, J., Thygesen, K. S., Jacobsen, K. W. (2010). Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. Journal of physics: Condensed matter, 22(25), 253202.
  • Reference22 Lisesivdin, S. B., Sarikavak-Lisesivdin, B. (2022). gpaw-tools–higher-level user interaction scripts for GPAW calculations and interatomic potential based structure optimization. Computational Materials Science, 204, 111201.
  • Referennce23 Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R. T., Ciraci, S. (2009). Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Physical Review B, 80(15), 155453.
  • Referece24 Zeng, B., Li, M., Zhang, X., Yi, Y., Fu, L., Long, M. (2016). First-principles prediction of the electronic structure and carrier mobility in hexagonal boron phosphide sheet and nanoribbons. The Journal of Physical Chemistry C, 120(43), 25037-25042.
  • Reference25 Hasan Khan, M. S., Islam, M. R., Hasan, M. T. (2020). Strain-dependent electronic and optical properties of boron-phosphide and germanium-carbide hetero-bilayer: A first-principles study. AIP Advances, 10(8), 085128.
  • Reference26 Çakır, D., Kecik, D., Sahin, H., Durgun, E., Peeters, F. M. (2015). Realization of ap–n junction in a single layer boron-phosphide. Physical Chemistry Chemical Physics, 17(19), 13013-13020.
  • Reference27 Islam, M. R., Liu, K., Wang, Z., Qu, S., Zhao, C., Wang, X., Wang, Z. (2021). Impact of defect and doping on the structural and electronic properties of monolayer boron phosphide. Chemical Physics, 542, 111054.
  • Reference28 Cheng, Y., Meng, R., Tan, C., Chen, X., Xiao, J. (2018). Selective gas adsorption and I–V response of monolayer boron phosphide introduced by dopants: A first-principle study. Applied Surface Science, 427, 176-188.
  • Reference29 Wang, Y., Huang, C., Li, D., Huang, F., Zhang, X., Huang, K., Xu, J. (2019). Stress-and electric-field-induced band gap tuning in hexagonal boron phosphide layers. Journal of Physics: Condensed Matter, 31(46), 465502.
  • Reference30 Yu, J., Guo, W. (2015). Strain tunable electronic and magnetic properties of pristine and semihydrogenated hexagonal boron phosphide. Applied Physics Letters, 106(4), 043107.
  • Reference31 Tran, F., Ehsan, S., Blaha, P. (2018). Assessment of the GLLB-SC potential for solid-state properties and attempts for improvement. Physical Review Materials, 2(2), 023802.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü