Cathode Materials for Microbial Fuel Cells

Cathode Materials for Microbial Fuel Cells

The most important problems of today are meeting the increasing energy needs and avoiding environmental pollution caused by fossil resources usage for energy production. In addition, the decrease in usable water in the world has become a threat to human health and the population. Microbial fuel cells (MFC) have become more interesting in recent years because of their potential to solve these three important problems. Organic and inorganic contents in wastewater can be seen as potential energy sources. MFCs are the only systems that can convert the chemical energy in the organic and inorganic content of wastewater into electricity. While this transformation is realized, the process of cleaning the wastewater can be done. Reducing the costs of these systems is the most important parameter to accelerate the use of the system. In particular, studies on reducing the cost and increasing the efficiency of the catalysts used in the cathode compartment where the oxygen reduction reaction takes place are predominant. In this study, cathode materials used in MFCs will be examined and alternative materials will be discussed.

___

  • [1] Logan, B. E., Hamelers, B., Rozendal, R. A., Schr€order, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181-5192. https://doi.org/10.1021/es0605016
  • [1] Kannan, M. V., & Kumar, G. G. (2016). Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications. Biosensors and Bioelectronics, 77, 1208-1220. https://doi.org/10.1016/j.bios.2015.10.018
  • [2] Turk, K. K., Kruusenberg, I., Kibena, P. E., Bhowmick, G. D., Kook, M., Tammeveski, K., Matisen, L., Merisalu, M., Sammelselg, V., Ghangrekar, M. M., Mitra, A., & Banerjee, R. (2018). Novel multi walled carbon nanotube based nitrogen impregnated Co and Fe cathode catalysts for improved microbial fuel cell performance. International Journal of Hydrogen Energy, 43(51), 23027-23035. https://doi.org/10.1016/j.ijhydene.2018.10.143
  • [3] He, L., Du, P., Chen, Y., Lu, H., Cheng, X., Chang, B., & Wang, Z. (2017). Advances in microbial fuel cells for wastewater treatment. Renewable and Sustainable Energy Reviews, 71, 388-403. https://doi.org/10.1016/j.rser.2016.12.069
  • [4] Abourached, C., English, M. J., & Liu, H. (2016). Wastewater Treatment by Microbial Fuel Cell (MFC) prior irrigation water reuse. Journal of Cleaner Production, 137, 144-149. https://doi.org/10.1016/j.jclepro.2016.07.048
  • [5] Palanisamy, G., Jung, H. Y., Sadhasivam, T., Kurkuri, M. D., Kim, S. C., & Roh, S. H. (2019). A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. Journal of Cleaner Production, 221, 598-621. https://doi.org/10.1016/j.jclepro.2019.02.172
  • [6] Huang, D., Li, M. J., Song, B.Y., & Liu Z. B. (2019). Structure and dynamics of microbial fuel cell catalyst layer. Electrochimica Acta, 300, 404-416. https://doi.org/10.1016/j.electacta.2019.01.111
  • [7] Wei X.Y., Liu, M., Yang, J., Du, W.N., Sun, X., Huang, Y.P., Zhang, X., Khalil, S.K., Lou, D.M., Zhou, Y.D. (2019). Characterization of PM2.5-bound PAHs and carbonaceous aerosols during three-month severe haze episode in Shanghai, China: Chemical composition, source apportionment and long-range transportation. Atmospheric Environment, 203, 1–3. https://doi.org/10.1016/j.atmosenv.2019.01.046
  • [8] Pandit, S., Sengupta, A., Kale, S., & Das, D. (2011). Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane. Bioresour Technolgy, 102(3), 2736-2744. https://doi.org/10.1016/j.biortech.2010.11.038
  • [9] Lu, M., & Li, S. F.Y. (2012). Cathode reactions and applications in microbial fuel cells: A review. Critical Reviews in Environmental Science Technolog, 42(23), 2504-2525. https://doi.org/10.1080/10643389.2011.592744
  • [10] Noori, M.T., Ghangrekar, M. M., & Mukherjee, C. K. (2016). V2O5 microflower decorated cathode for enhancing power generation in air-cathode microbial fuel cell treating fish market wastewater. International Journal of Hydrogen Energy, 41(5), 3638-3645. https://doi.org/10.1016/j.ijhydene.2015.12.163
  • [11] Kodali, M., Santoro, C., Herrera, S., Serov, A., & Atanassov, P. (2017). Bimetallic platinum group metal-free catalysts for high power generating microbial fuel cells. Journal of Power Sources, 366, 18-26. https://doi.org/10.1016/j.jpowsour.2017.08.110
  • [12] Kim, S., Kato, S., Ishizaki, T., Li, O.L., & Kang, J. (2019). Transition Metal (Fe, Co, Ni) Nanoparticles on Selective Amino-N-Doped Carbon as High-Performance Oxygen Reduction Reaction Electrocatalyst. Nanomaterials, 9(5), 742. https://doi.org/10.3390/nano9050742
  • [13] Deng, L., Yuan, Y., Zhang, Y., Wang, Y., Chen, Y., Yuan, H., & Chen, Y. (2017). Alfalfa leafderived porous heteroatom-doped carbon materials as efficient cathodic catalysts in microbial fuel cells. ACS Sustainable Chemistry & Engineering, 5(11), 9766-9773. https://doi.org/10.1021/acssuschemeng.7b01585
  • [14] Zhang, L., Lu, Z., Li, D., Ma, J., Song, P., Huang, G., Liu, Y., &Cai, L. (2016). Chemically activated graphite enhanced oxygen reduction and power output in catalyst-free microbial fuel cells. Journal of Cleaner Production, 115, 332-336. https://doi.org/10.1016/j.jclepro.2015.12.067
  • [15] Wang, Z., Cao, C., Zheng, Y., Chen, S., & Zhao, F. (2014). Abiotic oxygen reduction reaction catalysts used in microbial fuel cells. ChemElectroChem, 1(11),1813–1821. https://doi.org/10.1002/celc.201402093
  • [16] Santoro, C., Arbizzani C., Erable B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225-244. https://doi.org/10.1016/j.jpowsour.2017.03.109
  • [17] Yuan, H., & He, Z. (2015). Graphene-modified electrodes for enhancing the performance of microbial fuel cells. Nanoscale, 7, 7022–7029. https://doi.org/10.1039/C4NR05637J
  • [18] Ren, P., Ci, S., Ding, Y., & Wen, Z. (2019). Molten-salt-mediated synthesis of porous Fe-containing N-doped carbon as efficient cathode catalysts for microbial fuel cells. Applied Surface Science, 481, 1206–1212. https://doi.org/10.1016/j.apsusc.2019.03.279
  • [19] Pan , Y., Mo, X., Li, K., Pu, L., Liu, D., & Yang, T. (2016). Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells. Bioresour Technology, 206, 285-289. https://doi.org/10.1016/j.biortech.2016.01.112
  • [20] Pu, L., & Li, K. (2016). Inverse Spinel NiCo2S4 Nanoparticles Coated on Activated Carbon as an Electrocatalyst Applied in Air Cathode Microbial Fuel Cells. The Electrochemical Society, 01,1832. https://doi.org/10.1149/MA2016-01/36/1832
  • [21] Wang, Z., Cao, C., Zheng, Y., Chen S., & Zhao, F. (2019). Hydrothermal synthesis of fe-mn bimetallic nanocatalysts as high efficiency cathode catalysts for microbial fuel cells. Journal of Power Sources, 414, 444–452. https://doi.org/10.1016/j.jpowsour.2019.01.024
  • [22] Huang, Q., Zhou, P., Yang, H., Zhu, L., & Wu, H. (2017). In situ generation of inverse spinel CoFe 2 O 4 nanoparticles onto nitrogen-doped activated carbon for an effective cathode electrocatalyst of microbial fuel cells. Chemical Engineering Journal, 325, 466-473. http://dx.doi.org/10.1016/j.cej.2017.05.079
  • [23] Ayyaru, S., Mahalingam S., & Ahn, Y. H. (2019). A non-noble V2O5 nanorods as an alternative cathode catalyst for microbial fuel cell applications. International Journal of Hydrogen Energy, 44, 4974-4984. https://doi.org/10.1016/j.ijhydene.2019.01.021
  • [24] Yuan, H., Hou, Y., Abu-Reesh, I. M., Chen, J., & He, Z. (2016). Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review. Materials Horizons, 3, 382—401. https://doi.org/10.1039/C6MH00093B
  • [25] Tang, H., Zeng, Y., Zeng, Y., Wang, R., Cai, S., Liao, C., Cai, H., Lu, X., & Tsiakaras, P. (2017). Iron-embedded nitrogen doped carbon frameworks as robust catalyst for oxygen reduction reaction in microbial fuel cells. Applied Catalysis B: Environmental, 202, 550-556. https://doi.org/10.1016/j.apcatb.2016.09.062
  • [26] Hirooka, K., Ichihashi, O., & Takeguchi, T. (2018). Sodium cobalt oxide as a non-platinum cathode catalyst for microbial fuel cells. Sustainable Environment Research, 28(6), 322-325. https://doi.org/10.1016/j.serj.2018.07.002
  • [27] Wu, Y., Wang, L., Jin, M., Kong, F., Qi, H., & Nan, J. (2019). Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell. Bioresource Technology, 283, 129–137. https://doi.org/10.1016/j.biortech.2019.03.080
  • [28] Majidi, M. R., Farahani, F. S., Hosseini, M., & Ahadzadeh, I. (2019). Low-cost nanowired α-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell. Bioelectrochemistry, 125, 38–45. https://doi.org/10.1016/j.bioelechem.2018.09.004
  • [29] Chiodoni, A., Salvador, G. P., Massaglia, G., Delmondo, L., Munoz-Tabares, J. A., Sacco, A., Garino, N., Castellino, M., Margaria, V., Ahmed, D., Pirri, C. F., & Quaglio M. (2019). MnxOy- based cathodes for oxygen reduction reaction catalysis in microbial fuel cells. International Journal of Hydrogen Energy, 44(9), 4432-4441. https://doi.org/10.1016/j.ijhydene.2018.11.064
  • [30] Lv, C., Liang, B., Zhong, M., Li, K., & Qi, Y. (2019). Activated carbon-supported multi-doped graphene as high-efficient catalyst to modify air cathode in microbial fuel cells. Electrochimica Acta, 304, 360-369. https://doi.org/10.1016/j.electacta.2019.02.094
  • [31] Zheng, S., Yang, F., Chen, S., Liu, L., Xiong, Q., Yu, T., Zhao, F., Schroder, U., & Hou, H. (2015). Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. Journal of Power Sources, 284, 252-257. https://doi.org/10.1016/j.jpowsour.2015.03.014
  • [32] Santoro, C., Kodali, M., Shamoon, N., Serov, A., Soavi, F., Merino-Jimenez, I., Gajda, I., Greenman, J., Ieropoulos, I., & Atanassov, P. (2019). Increased power generation in supercapacitive microbial fuel cell stack using Fe—N—C cathode catalyst. Journal of Power Sources, 412, 416–424. https://doi.org/10.1016%2Fj.jpowsour.2018.11.069
  • [33] Tang C. and Zhang Q.,(2016) Can Metal–Nitrogen–Carbon Catalysts Satisfy Oxygen Electrochemistry?. J. Mater. Chem. A,, 4, 4998–5001. https://doi.org/10.1039/C6TA01062H
  • [34] Su Y., Jiang H., Zhu Y., Zou W., Yang X., Chen J. and Li C (2014). Hierarchical Porous Iron and Nitrogen Co-Doped Carbons As Efficient Oxygen Reduction Electrocatalysts In Neutral Media. J. Power Sources, 2014, 265, 246–253. https://doi.org/10.1016/j.jpowsour.2014.04.140
  • [35] Wenmu L., Aiping Y., Higgins DC., Llanos BG., and Zhongwei C.* (2010). Biologically Inspired Highly Durable Iron Phthalocyanine Catalysts for Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. Journal of the American Chemical Society, 132, 48, 17056–17058. https://doi.org/10.1021/ja106217u
  • [36] Santoro, C., Serov, A., Gokhale, R., Rojas-Carbonell, S., Stariha, L., Gordon, J., Artyushkova, K., & Atanassov, P. (2017). A family of Fe-N-C oxygen reduction electrocatalysts for microbial fuel cell (MFC) application: Relationships between surface chemistry and performances. Applied Catalysis B: Environmental, 205, 24–33. https://doi.org/10.1016/j.apcatb.2016.12.013
  • [37] Jiang, C., Yang, Q., Wang, D., Zhong, Y., Chen, F., & Li, X. (2017). Simultaneous perchlorate and nitrate removal coupled with electricity generation in autotrophic denitrifying biocathode microbial fuel cell. Chemical Engineering Journal, 308, 783–790. https://doi.org/10.1016/j.cej.2016.09.121
  • [38] Sotres, A., Cerrillo, M., Viñas, M., & Bonmatí, A. (2016). Nitrogen removal in a two-chambered microbial fuel cell: Establishment of a nitrifying–denitrifying microbial community on an intermittent aerated cathode. Chemical Engineering Journal, 284, 905–916. https://doi.org/10.1016/j.cej.2015.08.100
  • [39] Park, Y., Park, S., Nguyen, V., Yu, J., Torres, C., & Rittmann, B. (2017). Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater. Chemical Engineering Journal, 316, 673–679. https://doi.org/10.1016/j.cej.2017.02.005
  • [40] Santoro, C., Babanova, S., Erable, B., Schuler, A., Atanassov, P. (2016). Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions, Bioelectrochemistry, 108, 1–7. https://doi.org/10.1016/j.bioelechem.2015.10.005
  • [41] Breheny, M., Bowman, K., Farahmand, N., Gomaa, O., Keshavarz, T., & Kyazze, G. (2019). Biocatalytic electrode ımprovement strategies in microbial fuel cell systems. Journal of Chemical Technology and Biotechnology, 94(7), 2081-2091. https://doi.org/10.1002/jctb.5916
  • [42] Christwardana, M., Kim, K. J. & Kwon, Y. (2016). Fabrication of mediatorless/ membraneless glucose/ oxygen based biofuel cell using biocatalysts ıncluding glucose oxidase and laccase enzymes. Scientific Reports,6, 1-10. https://doi.org/10.1038/srep30128
  • [43] Lai, C., Wu, C., Meng, C., & Lin, C. (2017). Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode. Applied Energy, 188, 392–398. https://doi.org/10.1016/j.apenergy.2016.12.044
  • [44] Bi, L., Ci, S., Cai, P., Li, H., & Wen, Z. (2018). One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells. Applied Surface Science, 427, 10-16. https://doi.org/10.1016/j.apsusc.2017.08.030
  • [45] Tao, Y., Liu, Q., Chen, J., Wang, B., Wang, Y., Liu, K., Li, M., Jiang, H., Lu, Z., & Wang, D. (2016). Hierarchically three-dimensional nanofiber based textile with high conductivity and biocompatibility as a microbial fuel cell anode. Environmental Science & Technology, 50(14), 7889-7895. https://doi.org/10.1021/acs.est.6b00648
  • [46] Logan, B., Cheng, S., Watson, V., & Estadt, G. (2007). Graphite fiber brush anodes for ıncreased power production ın air-cathode microbial fuel cells. Environmental Science & Technology, 41, 3341-3346. https://doi.org/10.1021/es062644y
  • [47] Hou, J., Liu, Z., Yang, S., & Zhou, Y. (2014). Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. Journal of Power Sources, 258, 204-209. https://doi.org/10.1016/j.jpowsour.2014.02.035
  • [48] Feng, Y., Yang, Q., Wang, X., Liu, Y., Lee, H., & Ren, N. (2011). Treatment of biodiesel production wastes with simultaneous electricity generation using a singlechamber microbial fuel cell. Bioresource Technology, 102(1), 411-415. https://doi.org/10.1016/j.biortech.2010.05.059
  • [49] Zhu, N., Che n, X., Zhang, T., Wu, P., Li, P., & Wu, J., (2011). Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresour Technology, 102(1), 422-426. https://doi.org/10.1016/j.biortech.2010.06.046
  • [50] Guo, X., Jia, J., Dong, H., Wang, Q., Xu, T., Fu, B., Ran, R., Liang, P., Huang, X., & Zhang, X. (2019). Hydrothermal synthesis of feemn bimetallic nanocatalysts as highefficiency cathode catalysts for microbial fuel cells. Journal of Power Sources, 414, 444–452. https://doi.org/10.1016/j.jpowsour.2019.01.024
  • [51] Kaewkannetra, P., Chiwes,W., & Chiu, T.Y. (2011). Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel, 90, 2746-2750. https://doi.org/10.1016/j.fuel.2011.03.031
  • [52] Zhang, Y., Mo, G., Li, X., Zhang,W., Zhang, J., Ye, J., Huang, X., & Yu, C. (2011). A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources, 196(13),5402-5407. https://doi.org/10.1016/j.jpowsour.2011.02.067
  • [53] Mehdinia, A., Ziaei, E., & Jabbari, A. (2014). Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation. International Journal of Hydrogen Energy, 39(20), 10724-10730. https://doi.org/10.1016/j.ijhydene.2014.05.008
  • [54] Yang, W., Lu, J. E., Zhang, Y., Peng, Y., Mercado, R., Li, J., Zhu, X., & Chen, S. (2019). Cobalt oxides nanoparticles supported on nitrogen-doped carbon nanotubes as high-efficiency cathode catalysts for microbial fuel cells. Inorganic Chemistry Communications, 105,69–75. https://doi.org/10.1016/j.inoche.2019.04.036
  • [55] Xu, G., Zheng, X., Lu, Y., Liu, G., Luo, H., Li, X., Zhang, R., & Jin, S. (2019). Development of microbial community within the cathodic biofilm of single-chamber air-cathode microbial fuel cell. Science of the Total Environment, 665, 641–648. https://doi.org/10.1016/j.scitotenv.2019.02.175
  • [56] Li, M., Zhong, K., Zhang, L., Wang, S., Zhang, H., Huang, Y., Chen, S., Mai, H., & Zhang, N. (2019). Cobalt-based catalysts modified cathode for enhancing bioelectricity generation and wastewater treatment in air-breathing cathode microbial fuel cells. Electroanalysis, 31, 1– 13. https://doi.org/10.1002/elan.201900161
  • [57] Tatinclaux, M., Gregoire, K., Leininger, A., Biffinger, J. C., Tender, L., Ramirez, M., Torrents, A., & Kjellerup, B. V. (2018). Electricity generation from wastewater using a floating air cathode microbial fuel cell. Water-Energy Nexus, 1(2),97–103. https://doi.org/10.1016/j.wen.2018.09.001
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü