Kanser Teşhis ve Tedavisinde Nano/mikromotor Teknolojisi

Nano/mikromotorlar, enerjiyi harekete dönüştürme kabiliyetine sahip nano veya mikro boyutta makinalardır. Bunlar; kimyasal yakıt ve harici etkenler neticesinde enerjiyi harekete dönüştürme prensibi ile çalışırlar. Bu harici etkenler; manyetik alan, elektrik alan, ultrason ve ışık gibi etkenler olabilir. Farklı tahrik mekanizmalarına sahip nano/mikromotorlar kanser ve bulaşıcı hastalıkların teşhis ve tedavisinde önemli rol oynarlar. Özellikle kanser tedavilerinde en çok tercih edilen yöntem olan kemoterapi ve radyoterapi gibi yöntemlerin insan sağlığı üzerindeki olumsuz etkileri, araştırmacıları nano/mikromotor çalışmalarına yönlendirmiştir. Nano/mikromotorlar; kanserleşmiş hücrenin erken teşhisini mümkün kılması ve geleneksel kanser tedavilerindeki yan etkilerin en aza indirilmesi gibi avantajlara sahiptir. Bu derlemede nano/miktomotorların sınıflandırılması ve sentez yöntemleri ele alınmakla birlikte, nano/mikromotorların kanser teşhis ve tedavisinde kullanımı açıklanmıştır.

Nano/micromotor Technology in Cancer Diagnosis and Treatment

Nano/micromotors are machines in the nano or micro scale that are capable of converting energy into motion. They operate on the principle of converting energy into motion through chemical fuel and external factors. These external factors can include magnetic fields, electric fields, ultrasound, and light. Nano/micromotors with different propulsion mechanisms play an important role in the diagnosis and treatment of cancer and infectious diseases. The negative effects of cancer treatments such as chemotherapy and radiotherapy on human health have led researchers to focus on nano/micromotor studies. Nano/micromotors have advantages such as enabling early diagnosis of cancer cells and minimizing the side effects of traditional cancer treatments. This review discusses the classification and synthesis methods of nano/micromotors, as well as their use in cancer diagnosis and treatment.

___

  • [1] Lv C., Yang Y., Li B., Nano/Micromotors in Active Matter, Micromachines (Basel), 13 (2022) 307.
  • [2] Sonntag L., Simmchen J., Magdanz V., Nano-and micromotors designed for cancer therapy, Molecules, 24 (2019) 3410.
  • [3] Paxton W.F., Kistler K.C., Olmeda C.C., Sen A., Angelo S.K., Cao Y., Mallouk T.E., Lammert P.E., Crespi V.H., Catalytic nanomotors: Autonomous movement of striped nanorods, J Am Chem Soc., 126 (2004) 13424–13431.
  • [4] Wang H., Pumera M., Micro/Nanomachines and Living Biosystems: From Simple Interactions to Microcyborgs, Adv Funct Mater, 28 (2018) 1705421.
  • [5] Li J., Rozen I., Wang J., Rocket Science at the Nanoscale, ACS Nano, 10 (2016) 5619–5634.
  • [6] Yuan K., Jiang Z., Jurado-Sánchez B., Escarpa A., Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases, Chemistry - A European Journal, 26 (2020) 2309–2326.
  • [7] Global Health Metrics, Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017, GBD 2017 Causes of Death Collaborators (2018)
  • [8] Zugazagoitia J., Guedes C., Ponce S., Ferrer I., Molina-Pinelo S., Paz-Ares L., Current Challenges in Cancer Treatment, Clin Ther. 38 (2016) 1551–1566.
  • [9] Siegel R.L., Miller K.D., Wagle N.S., A. Jemal, Cancer statistics, 2023, CA Cancer J Clin. 73 (2023) 17–48.
  • [10] Yi X., Zeng W., Wang C., Chen Y., Zheng L., Zhu X., Ke Y., He X., Kuang Y., Huang Q., A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy, Nano Res., 15 (2022) 1205–1212.
  • [11] Alekshun M.N., Levy S.B., Molecular Mechanisms of Antibacterial Multidrug Resistance, Cell, 128 (2007) 1037–1050.
  • [12] Chu G.C., Kimmelman A.C., Hezel A.F., DePinho R.A., Stromal biology of pancreatic cancer, J Cell Biochem, 101 (2007) 887–907.
  • [13] Yurdabak Karaca G., Kuralay F., Ozaltın K., Eren Demirbüken S., Garipcan B., Oksuz L., Uygun Oksuz A., Gold−Nickel Nanowires as Nanomotors for Cancer Marker Biodetection and Chemotherapeutic Drug Delivery, 4 (2021) 3377-3388.
  • [14] Garcia-Gradilla V., Orozco J., Sattayasamitsathit S., Soto F., Kuralay F., Pourazary A., Katzenberg A., Gao W., Shen Y., Wang J., Functionalized ultrasound-propelled magnetically guided nanomotors: Toward practical biomedical applications, ACS Nano, 7 (2013) 9232–9240.
  • [15] Lin X., Xu B., Zhu H., Liu J., Solovev A., Mei Y., Requirement and Development of Hydrogel Micromotors towards Biomedical Applications, Research, 2020 (2020) 1–15.
  • [16] Luo M., Feng Y., Wang T., Guan J., Micro-/Nanorobots at Work in Active Drug Delivery, Adv Funct Mater, 28 (2018) 1706100.
  • [17] Li T., Wan M., Mao C., Research Progress of Micro/Nanomotors for Cancer Treatment, Chempluschem, 85 (2020) 2586–2598.
  • [18] Zhang H., Duan W., Liu L., Sen A., Depolymerization-powered autonomous motors using biocompatible fuel, J Am Chem Soc., 135 (2013) 15734–15737.
  • [19] Zhang D., Liu S., Guan J., Mou F., “Motile-targeting” drug delivery platforms based on micro/nanorobots for tumor therapy, Front Bioengineering and Biotechnology, 10 (2022) 1002171.
  • [20] Yurdabak Karaca G., Uygun Öksüz A., Nano/Mikromotorlar ve Biyomedikal Uygulamaları, Gazi Üniversitesi Fen Fakültesi Dergisi, 1 (2020) 61 – 77.
  • [21] Mou F., Chen C., Ma H., Yin Y., Wu Q., Guan J., Self-propelled micromotors driven by the magnesium-water reaction and their hemolytic propertiem, Angewandte Chemie - International Edition, 52 (2013) 7208–7212.
  • [22] Liou G.Y., Storz P., Reactive oxygen species in cancer, Free Radic Res., 44 (2010) 479–496.
  • [23] Wan M., Chen H., Wang Q., Niu Q., Xu P., Yu Y., Zhu T., Mao C., Shen J., Bio-inspired nitric-oxide-driven nanomotor, Nat Commun., 10 (2019) 966.
  • [24] Chen C., Soto F., Karshalev E., Li J., Wang J., Hybrid Nanovehicles: One Machine, Two Engines, Adv Funct Mater., 29 (2019).
  • [25] Tu Y., Peng F., White P.B., Wilson D.A., Redox-Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione, Angewandte Chemie., 129 (2017) 7728–7732.
  • [26] Choi H., Lee G.H., Kim K.S., Hahn S.K., Light-Guided Nanomotor Systems for Autonomous Photothermal Cancer Therapy, ACS Appl Mater Interfaces., 10 (2018) 2338–2346.
  • [27] Mou F., Chen C., Zhong Q., Yin Y., Ma H., Guan J., Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(n -isopropylacrylamide) janus micromotors driven by simulated body fluid and blood plasma, ACS Appl Mater Interfaces, 6 (2014) 9897–9903.
  • [28] Xiong K., Xu L., Lin J., Mou F., Guan J., Mg-Based Micromotors with Motion Responsive to Dual Stimuli, Research, 2020 (2020) 1–12.
  • [29] Mou F., Xie Q., Liu J., Che S., Bahmane L., You M., Guan J., ZnO-based micromotors fueled by CO2: The first example of self-reorientation-induced biomimetic chemotaxis, Natl Sci Rev., 8 (2021) nwab066.
  • [30] Peyer K.E., Zhang L., Nelson B.J., Bio-inspired magnetic swimming microrobots for biomedical applications, Nanoscale, 5 (2013) 1259–1272.
  • [31] Wang B., Kostarelos K., Nelson B.J., Zhang L., Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications, Advanced Materials, 33 (2021) 2002047.
  • [32] Karaca G. Y., Kaya H. K., Kuralay F., Oksuz A. U., Chitosan functionalized gold-nickel bimetallic magnetic nanomachines for motion-based deoxyribonucleic acid recognition, Int J Biol Macromol. 193 (2021) 370–377.
  • [33] Yu Y., Shang L., Gao W., Zhao Z., Wang H., Zhao Y., Microfluidic Lithography of Bioinspired Helical Micromotors, Angewandte Chemie - International Edition, 56 (2017) 12127–12131.
  • [34] Chen X., Zhou C., Wang W., Colloidal Motors 101: A Beginner’s Guide to Colloidal Motor Research, Chem Asian J., 14 (2019) 2388–2405.
  • [35] Li J., Li T., Xu T., Kiristi M., Liu W., Wu Z., Wang J., Magneto-Acoustic Hybrid Nanomotor, Nano Lett., 15 (2015) 4814–4821.
  • [36] Wang J., Gao W., Nano/microscale motors: Biomedical opportunities and challenges, ACS Nano., 6 (2012) 5745–5751.
  • [37] Soto F., Martin A., Ibsen S., Vaidyanathan M., Garcia-Gradilla V., Levin Y., Escarpa A., Esener S.C., Wang J., Acoustic microcannons: Toward advanced microballistics, ACS Nano., 10 (2016) 1522–1528.
  • [38] Fernández-Medina M., Ramos-Docampo M.A., Hovorka O., Salgueiriño V., Städler B., Recent Advances in Nano- and Micromotors, Adv Funct Mater., 30 (2020) 1908283.
  • [39] Liu M., Zentgraf T., Liu Y., Bartal G., Zhang X., Light-driven nanoscale plasmonic motors, Nat Nanotechnol., 5 (2010) 570–573.
  • [40] Koumura N., Zijistra R.W.J., Delden R.A., Harada N., Feringa B.L., Light-driven monodirectional molecular rotor, Nature., 401 (1999) 152–155.
  • [41] Pacheco M., Jurado-Sánchez B., Escarpa A., Visible-Light-Driven Janus Microvehicles in Biological Media, Angewandte Chemie - International Edition., 58 (2019) 18017–18024.
  • [42] Mourran A., Zhang H., Vinokur R., Möller M., Soft Microrobots Employing Nonequilibrium Actuation via Plasmonic Heating, Advanced Materials, 29 (2017) 1604825.
  • [43] Dreyfus R., Baudry J., Roper M.L., Fermigier M., Stone H.A., Bibette J., Microscopic artificial swimmers, Nature, 437 (2005) 862–865.
  • [44] Xing Y., Zhou M., Du X., Li X., Li J., Xu T., Zhang X., Hollow mesoporous carbon@Pt Janus nanomotors with dual response of H2O2 and near-infrared light for active cargo delivery, Appl Mater Today, 17 (2019) 85–91.
  • [45] Calvo-Marzal P., Sattayasamitsathit S., Balasubramanian S., Windmiller J.R., Dao C., Wang J., Propulsion of nanowire diodes, Chemical Communications, 46 (2010) 1623–1624.
  • [46] Guo J., Gallegos J.J., Tom A.R., Fan D., Electric-Field-Guided Precision Manipulation of Catalytic Nanomotors for Cargo Delivery and Powering Nanoelectromechanical Devices, ACS Nano, 12 (2018) 1179–1187.
  • [47] Williams B.J., Anand S. v., Rajagopalan J., Saif M.T.A., A self-propelled biohybrid swimmer at low Reynolds number, Nat Commun., 5 (2014) 3081.
  • [48] Xu B., Han X., Hu Y., Luo Y., Chen C.H., Chen Z., Shi P., A Remotely Controlled Transformable Soft Robot Based on Engineered Cardiac Tissue Construct, Small, 15 (2019) 1900006.
  • [49] Sun L., Yu Y., Chen Z., Bian F., Ye F., Sun L., Zhao Y., Biohybrid robotics with living cell actuation, Chem Soc Rev., 49 (2020) 4043–4069.
  • [50] Xu H., Medina-Sánchez M., Magdanz V., Schwarz L., Hebenstreit F., Schmidt O.G., Sperm-Hybrid Micromotor for Targeted Drug Delivery, ACS Nano, 12 (2018) 327–337.
  • [51] Esteban-Fernández De Ávila B., Gao W., Karshalev E., Zhang L., Wang J., Cell-Like Micromotors, Acc Chem Res., 51 (2018) 1901–1910.
  • [52] Magdanz V., Sanchez S., Schmidt O.G., Development of a sperm-flagella driven micro-bio-robot, Advanced Materials, 25 (2013) 6581–6588.
  • [53] Bhuyan T., Singh A.K., Dutta D., Unal A., Ghosh S.S., Bandyopadhyay D., Magnetic Field Guided Chemotaxis of iMushbots for Targeted Anticancer Therapeutics, ACS Biomater Sci Eng., 3 (2017) 1627–1640.
  • [54] Ramos Docampo M.A., Wang N., Pendlmayr S., Städler B., Self-Propelled Collagenase-Powered Nano/Micromotors, ACS Appl Nano Mater., 5 (2022) 14622–14629.
  • [55] Liu W., Wang W., Dong X., Sun Y., Near-Infrared Light-Powered Janus Nanomotor Significantly Facilitates Inhibition of Amyloid-β Fibrillogenesis, ACS Appl Mater Interfaces., 12 (2020) 12618–12628.
  • [56] Venugopalan P.L., Ghosh A., Investigating the Dynamics of the Magnetic Micromotors in Human Blood, Langmuir., 37 (2021) 289–296.
  • [57] Xu P., Yu Y., Li T., Chen H., Wang Q., Wang M., Wan M., Mao C., Near-infrared-driven fluorescent nanomotors for detection of circulating tumor cells in whole blood, Anal Chim Acta., 1129 (2020) 60–68.
  • [58] Karimi M.R., Khoee S., Shaghaghi B., Smart transformation of bowl shape chitosan nanomotors to disc shape in simulated biological media and consequent controlled velocity, J Drug Deliv Sci Technol., 80 (2023) 104096.
  • [59] Xing Y., Zhou M., Liu X., Qiao M., Zhou L., Xu T., Zhang X., Du X., Bioinspired Jellyfish-like Carbon/Manganese nanomotors with H2O2 and NIR light Dual-propulsion for enhanced tumor penetration and chemodynamic therapy, Chemical Engineering Journal., 461 (2023) 142142.
  • [60] Xing Y., Xiu J., Zhou M., Xu T., Zhang M., Li H., Li X., Du X., Ma T., Zhang X., Copper Single-Atom Jellyfish-like Nanomotors for Enhanced Tumor Penetration and Nanocatalytic Therapy, ACS Nano., (2023) 142142.
  • [61] Wang W., Ma E., Tao P., Zhou X., Xing Y., Chen L., Zhang Y., Li J., Xu K., Wang H., Zheng S., Chemical-NIR dual-powered CuS/Pt nanomotors for tumor hypoxia modulation, deep tumor penetration and augmented synergistic phototherapy, J Mater Sci Technol., 148 (2023) 171–185.
  • [62] Li J., Huang G., Ye M., Li M., Liu R., Mei Y., Dynamics of catalytic tubular microjet engines: Dependence on geometry and chemical environment, Nanoscale., 3 (2011) 5083–5089.
  • [63] Magdanz V., Guix M., Schmidt O.G., Tubular micromotors: from microjets to spermbots, Robotics Biomim., 1 (2014) 11.
  • [64] Mei Y., Huang G., Solovev A.A., Ureña E.B., Mönch I., Ding F., Reindl T., Fu R.K.Y., Chu P.K., Schmidt O.G., Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers, Advanced Materials., 20 (2008) 4085–4090.
  • [65] Solovev A.A., Mei Y., Ureña E.B., Huang G., Schmidt O.G., Catalytic microtubular jet engines self-propelled by accumulated gas bubbles, Small, 5 (2009) 1688–1692.
  • [66] Sanchez S., Solovev A.A., Mei Y., Schmidt O.G., Dynamics of biocatalytic microengines mediated by variable friction control, J Am Chem Soc., 132 (2010) 13144–13145.
  • [67] Gennes P., Soft Matter (Nobel Lecture), Angewandte Chemie International Edition in English., 31 (1992) 842–845.
  • [68] Lattuada M., Hatton T.A., Synthesis, properties and applications of Janus nanoparticles, Nano Today., 6 (2011) 286–308.
  • [69] Li X., Chen L., Cui D., Jiang W., Han L., Niu N., Preparation and application of Janus nanoparticles: Recent development and prospects, Coord Chem Rev., 454 (2022) 214318.
  • [70] Wei J., Liu Y., Li Y., Zhang Z., Meng J., Xie S., Li X., Photothermal Propelling and Pyroelectric Potential‐Promoted Cell Internalization of Janus Nanoparticles and Pyroelectrodynamic Tumor Therapy, Adv Healthc Mater., (2023) 2300338.
  • [71] Eren Demirbuken S., Yurdabak Karaca G., Kaya H. K., Oksuz L., Garipcan B., Uygun Oksuz A., Kuralay F., Paclitaxel-conjugated phenylboronic acid-enriched catalytic robots as smart drug delivery systems, Materials Today Chemistry, 26 (2022) 101172.
  • [72] Mei Y., Solovev A.A., Sanchez S., Schmidt O.G., Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines, Chem Soc Rev., 40 (2011) 2109–2119.
  • [73] Dong R., Zhang Q., Gao W., Pei A., Ren B., Highly efficient light-driven TiO2-Au Janus Micromotors, ACS Nano, 10 (2016) 839–844.
  • [74] Gao W., Pei A., Wang J., Water-driven micromotors, ACS Nano, 6 (2012) 8432–8438.
  • [75] Li J., Li T., Xu T., Kiristi M., Liu W., Wu Z., Wang J., Magneto-Acoustic Hybrid Nanomotor, Nano Lett., 15 (2015) 4814–4821.
  • [76] Gao W., Sattayasamitsathit S., Manesh K.M., Weihs D., Wang J., Magnetically powered flexible metal nanowire motors, J Am Chem Soc., 132 (2010) 14403–14405.
  • [77] Ahmed D., Baasch T., Jang B., Pane S., Dual J., Nelson B.J., Artificial Swimmers Propelled by Acoustically Activated Flagella, Nano Lett., 16 (2016) 4968–4974.
  • [78] Yuan K., Bujalance-Fernández J., Jurado-Sánchez B., Escarpa A., Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing, Microchimica Acta., (2020) 187-581.
  • [79] Çetinel A. (2017). Gözenekli Silikon Kalıpların Elde Edilmesi, Elektrodepozisyon Yöntemi İle Gözenekli Silikon Kalıplar Üzerinde Metalik Co Ve Ag Nanoyapıların Büyütülmesi, Yapısal Ve Optiksel Karakterizasyonu, Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • [80] Wang H., Pumera M., Fabrication of micro/nanoscale motors, Chem Rev., 115 (2015) 8704–8735.
  • [81] Puigmartí-Luis J., Sevim S., Pellicer E., Jang B., Chatzipirpiridis G., Chen X.Z., Nelson B.J., Pané S., Magnetically and chemically propelled nanowire-based swimmers, in: Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications, Elsevier, (2020) 777–799.
  • [82] Shen H., Cai S., Wang Z., Ge Z., Yang W., Magnetically driven microrobots: Recent progress and future development, Mater Des., 227 (2023) 111735.
  • [83] Li J., Sattayasamitsathit S., Dong R., Gao W., Tam R., Feng X., Ai S., Wang J., Template electrosynthesis of tailored-made helical nanoswimmers, Nanoscale, 6 (2014) 9415–9420.
  • [84] Schmidt O. G., Eberl K., Thin solid films roll up into nanotubes, Nature Research Akademies, 410 (2001) 168.
  • [85] Wang L., Hao X., Gao Z., Yang Z., Long Y., Luo M., Guan J., Artificial nanomotors: Fabrication, locomotion characterization, motion manipulation, and biomedical applications, Interdisciplinary Materials, 1 (2022) 256–280.
  • [86] Xuan M., Wu Z., Shao J., Dai L., Si T., He Q., Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors, J Am Chem Soc., 138 (2016) 6492–6497.
  • [87] Bell D.J., Leutenegger S., Hammar M.K., Dong L., Nelson B.J., Flagella-Like Propulsion for Microrobots Using a Nanocoil and a Rotating Electromagnetic Field, 2007 IEEE International Conference on Robotics and Automation (2007),1128-1133. [88] Ismagilov R.F., Schwartz A., Bowden N., Whitesides G.M., Autonomous movement and self-assembly, Angewandte Chemie - International Edition. 41 (2002) 652–654.
  • [89] Fournier-Bidoz S., Arsenault A.C., Manners I., Ozin G.A., Synthetic self-propelled nanorotors, Chemical Communications. (2005) 441–443.
  • [90] Zhang L., Abbott J.J., Dong L., Kratochvil B.E., Bell D., Nelson B.J., Artificial bacterial flagella: Fabrication and magnetic control, Appl Phys Lett. 94 (2009) 064107.
  • [91] Zhang L., Abbott J.J., Dong L., Peyer K.E., Kratochvil B.E., Zhang H., Bergeles C., Nelson B.J., Characterizing the swimming properties of artificial bacterial flagella, Nano Lett. 9 (2009) 3663–3667.
  • [92] Calvo-Marzal P., Manesh K.M., Kagan D., Balasubramanian S., Cardona M., Flechsig G.U., Posner J., Wang J., Electrochemically-triggered motion of catalytic nanomotors, Chemical Communications. (2009) 4509–4511.
  • [93] Howse J.R., Jones R.A.L., Ryan A.J., Gough T., Vafabakhsh R., Golestanian R., Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk, Phys Rev Lett. 99 (2007) 048102.
  • [94] Kagan D., Laocharoensuk R., Zimmerman M., Clawson C., Balasubramanian S., Kang D., Bishop D., Sattayasamitsathit S., Zhang L., Wang J., Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles, Small, 6 (2010) 2741–2747.
  • [95] Kagan D., Benchimol M.J., Claussen J.C., Chuluun-Erdene E., Esener S., Wang J., Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation, Angewandte Chemie - International Edition. 51 (2012) 7519–7522.
  • [96] Zhang J., Zhang K., Hao Y., Yang H., Wang J., Zhang Y., Zhao W., Ma S., Mao C., Polydopamine nanomotors loaded indocyanine green and ferric ion for photothermal and photodynamic synergistic therapy of tumor, J Colloid Interface Sci. 633 (2023) 679–690.
  • [97] Zhang Y., Zhang K., Yang H., Hao Y., Zhang J., Zhao W., Zhang S., Ma S., Mao C., Highly Penetrable Drug-Loaded Nanomotors for Photothermal-Enhanced Ferroptosis Treatment of Tumor, ACS Appl Mater Interfaces. 15 (2023) 14099−14110.
  • [98] Guo M., Ling J., Xu X., Ouyang X., Delivery of Doxorubicin by Ferric Ion-Modified Mesoporous Polydopamine Nanoparticles and Anticancer Activity against HCT-116 Cells İn vitro, Int J Mol Sci. 24 (2023) 6854.
  • [99] Dutta D., Sailapu S.K., Biomedical Applications of Nanobots, in: Intelligent Nanomaterials for Drug Delivery Applications, Elsevier, (2020) 179–195.
  • [100] Liu L., Gao J., Wilson D.A., Tu Y., Peng F., Fuel-Free Micro-/Nanomotors as Intelligent Therapeutic Agents, Chem Asian J., 14 (2019) 2325–2335.
  • [101] Chen M., Ma E., Xing Y., Xu H., Chen L., Wang Y., Zhang Y., Li J., Wang H., Zheng S., Dual-Modal Lateral Flow Test Strip Assisted by Near-Infrared-Powered Nanomotors for Direct Quantitative Detection of Circulating MicroRNA Biomarkers from Serum, ACS Sens., 8 (2023) 757–766.
  • [102] Yuan K., Bujalance-Fernández J., Jurado-Sánchez B., Escarpa A., Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing, Microchimica Acta, (2020) 187-581.
  • [103] Campuzano S., Orozco J., Kagan D., Guix M., Gao W., Sattayasamitsathit S., Claussen J.C., Merkoçi A., Wang J., Bacterial isolation by lectin-modified microengines, Nano Lett., 12 (2012) 396–401.
  • [104] Balasubramanian S., Kagan D., Jack Hu C.-M., Campuzano S., Lobo-Castañon M.J., Lim N., Kang D.Y., Zimmerman M., Zhang L., Wang J., Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media, Angewandte Chemie., 123 (2011) 4247–4250.
  • [105] Esteban-Fernández De Ávila B., Angsantikul P., Ramírez-Herrera D.E., Soto F., Teymourian H., Dehaini D., Chen Y., Zhang L., Wang J.,Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins, Medıcal Robots, 3 (2018) 18.
  • [106] Xu Y., Wang H., Luan C., Liu Y., Chen B., Zhao Y., Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria, Biosens Bioelectron, 100 (2018) 404–410.
  • [107] Hoop M., Shen Y., Chen X.Z., Mushtaq F., Iuliano L.M., Sakar M.S., Petruska A., Loessner M.J., Nelson B.J., Pané S., Magnetically Driven Silver-Coated Nanocoils for Efficient Bacterial Contact Killing, Adv Funct Mater., 26 (2016) 1063–1069.
  • [108] Vilela D., Stanton M.M., Parmar J., Sánchez S., Microbots Decorated with Silver Nanoparticles Kill Bacteria in Aqueous Media, ACS Appl Mater Interfaces., 9 (2017) 22093–22100.
  • [109] Kiristi M., Singh V. v., Esteban-Fernández De Ávila B., Uygun M., Soto F., Aktaş Uygun D., Wang J., Lysozyme-Based Antibacterial Nanomotors, ACS Nano, 9 (2015) 9252–9259.
  • [110] Wu Y., Si T., Shao J., Wu Z., He Q., Near-infrared light-driven Janus capsule motors: Fabrication, propulsion, and simulation, Nano Res., 9 (2016) 3747–3756.
  • [111] Gao W., Ávila B.E.F., Zhang L., Wang J., Targeting and isolation of cancer cells using micro/nanomotors, Adv Drug Deliv Rev., 125 (2018) 94–101.
  • [112] Gao W., Kagan D., Pak O.S., Clawson C., Campuzano S., Chuluun-Erdene E., Shipton E., Fullerton E.E., Zhang L., Lauga E., Wang J., Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery, Small, 8 (2012) 460–467.
  • [113] Wu Y., Lin X., Wu Z., Möhwald H., He Q., Self-propelled polymer multilayer janus capsules for effective drug delivery and light-triggered release, ACS Appl Mater Interfaces., 6 (2014) 10476–10481.
  • [114] Liu K., Ou J., Wang S., Gao J., Liu L., Ye Y., Wilson D.A., Hu Y., Peng F., Tu Y., Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy, Appl Mater Today, 20 (2020) 100694.
  • [115] Ma X., Hortelão A.C., Patiño T., Sánchez S., Enzyme Catalysis to Power Micro/Nanomachines, ACS Nano. 10 (2016) 9111–9122.
  • [116] Moran J.L., Posner J.D., Phoretic Self-Propulsion, Annu Rev Fluid Mech. 49 (2017) 511–540.
  • [117] Wang W., Zhou C., A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the State-of-the-Art, Adv Healthc Mater. 10 (2021) 2001236.
  • [118] Wang W., Castro L.A., Hoyos M., Mallouk T.E., Autonomous motion of metallic microrods propelled by ultrasound, ACS Nano. 6 (2012) 6122–6132.
  • [119] Aghakhani A., Yasa O., Wrede P., Sitti M., Acoustically powered surface-slipping mobile microrobots, National Acad Sciences 117 (2020) 3469–3477
  • [120] Ren L., Nama N., Mcneill J.M., Soto F., Yan Z., Liu W., Wang W., Wang J., Mallouk T.E., 3D steerable, acoustically powered microswimmers for single-particle manipulation, 5 (2019) eaax3084 (1-10).
  • [121] McNeill J.M., Nama N., Braxton J.M., Mallouk T.E., Wafer-Scale Fabrication of Micro- To Nanoscale Bubble Swimmers and Their Fast Autonomous Propulsion by Ultrasound, ACS Nano. 14 (2020) 7520–7528.
  • [122] Li Z., Zhang H., Wang D., Gao C., Sun M., Wu Z., He Q., Reconfigurable Assembly of Active Liquid Metal Colloidal Cluster, Angewandte Chemie. 132 (2020) 20056–20060.
  • [123] Yan X., Zhou Q., Vincent M., Deng Y., Yu J., Xu J., Xu T., Tang T., Bian L., Wang Y.-X.J., Kostarelos K., Zhang L., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy, eaaq1155 2017.
  • [124] Jiang H.R., Yoshinaga N., Sano M., Active motion of a Janus particle by self-thermophoresis in a defocused laser beam, Phys Rev Lett. 105 (2010).
  • [125] Buttinoni I., Volpe G., Kümmel F., Volpe G., Bechinger C., Active Brownian Motion Tunable by Light, (2011).
  • [126] Wu Z., Si T., Gao W., Lin X., Wang J., He Q., Superfast Near-Infrared Light-Driven Polymer Multilayer Rockets, Small. 12 (2016) 577–582.
  • [127] Zhou H., Yuan Y., Wang Z., Ren Z., Hu M., Lu J.K., Gao H., Pan C., Zhao W., Zhu B., Co-delivery of doxorubicin and quercetin by Janus hollow silica nanomotors for overcoming multidrug resistance in breast MCF-7/Adr cells, Colloids Surf A Physicochem Eng Asp. 658 (2023) 130654.
  • [128] Wei F., Yin C., Zheng J., Zhan Z., Yao L., Rise of cyborg microrobot: Different story for different configuration, IET Nanobiotechnol. 13 (2019) 651–664.
  • [129] Buss N., Yasa O., Alapan Y., Akolpoglu M.B., Sitti M., Nanoerythrosome-functionalized biohybrid microswimmers, APL Bioeng. 4 (2020).