İnsörtlü Toz Enjeksiyon Kalıplamada İnsört Malzemesinin Araştırılması

İnsörtlü toz enjeksiyon kalıplama (İTEK) kalın parçaların (>10 mm) üretilebilmesi içingeliştirilmiş bir yöntemdir. Bu yöntemde önceden hazırlanmış insörtler üzerine besleme stokuenjekte edilir. Enjeksiyon işleminden sonra kalıplanan parçalara bağlayıcı giderme ve sinterlemeişlemleri uygulanır. Bu çalışmada, İTEK yöntemi ile üretilecek parçalarda, insört malzemesininuygunluğu ve etkileri araştırılmıştır. Deneylerde tungsten karbür kobalt (WC-%9Co) beslemestoku kullanılmıştır. İnsört malzemesinin etkilerini belirlemek için DIN malzeme nolu, 1.2312,1.2344, 1.2379, 1.0402 (AISI 1020), 1.0535 (AISI 1050) ve 1.7225 (AISI 4140) çeliklerindeninsörtler hazırlanmıştır. Bu insörtler üzerine WC besleme stoku enjekte edildikten sonra 1200,1250 ve 1400 °C derecelerde ve 60, 180 ve 240 dakika sürelerde sinterleme işlemleri yapılmıştır.Deneyler sonucunda 1400°C sinterleme sıcaklığında insörtlerin eridiği, 1200 °C ve 1250 °Csıcaklıklarda ise geometrik formlarını koruduğu belirlenmiştir. Fakat bu sıcaklıklarda (1200 °C -1250 °C) insört ile enjekte bölge arasında bir birleşme oluşmadığı belirlenmiştir.

Investigation of Insert Material in Inserted Powder Injection Molding

Inserted powder injection molding (IPIM) is a method developed to produce of thick parts (> 10 mm). In this method, feedstock is injected onto the previously prepared inserts. After the injection process, binder removal and sintering processes are applied to the molded parts. In this study, the suitability and effects of the insert material were investigated in the parts to be produced by the IPIM method. Tungsten carbide cobalt (WC- 9%Co) feedstock was used in the experiments. In order to determine the effects of the insert material, inserts were prepared from steels DIN 1.0402 (AISI 1020), 1.0535 (AISI 1050), 1.2312, 1.2344, 1.2379 and 1.7225 (AISI 4140). After injecting WC-Co feedstock on these inserts, sintering processes were carried out at 1200, 1250 and 1400 °C temperatures and dwell time of 60, 180 and 240 minutes. As a result of the experiments, it was determined that inserts melted at 1400 °C sintering temperature but they preserve their geometric form at 1200 °C and 1250 °C temperature. However, at these temperatures (1200 °C - 1250 °C) it was determined that there was no diffusion between the insert and the injected region.

___

  • [1] Subaşı, M., Koçak, H., Safarian, A., Karataş Ç. (2020). Investigation of functional core-rim composite part production by inserted powder injection moulding. Materials Science and Technology, 36, 293- 298.
  • [2] Safarian, A., Subaşı, M., Karataş, Ç. (2017). The effect of sintering parameters on diffusion bonding of 316L stainless steel in inserted metal injection molding. The International Journal of Advanced Manufacturing Technology, 89, 2165-2173.
  • [3] Koçak, H., Subaşı, M., Karataş, Ç. (2019). Sinter bonding of AISI 4340 and WC-Co using Ni interlayer by inserted powder injection molding. Ceramics International, 45, 22331-22335.
  • [4] Heaney, DF., Suri, P., German, R.M. (2003). Defect-free sintering of two material powder injection molded components Part I Experimental investigations. Journal of Materials Science, 38, 4869-4874.
  • [5] Antusch, S., Norajitra, P., Piotter, V., Ritzhaupt-Kleissl, H.-J., Spatafora, L. (2011). Powder Injection Molding – An innovative manufacturing method for He-cooled DEMO divertor components. Fusion Engineering and Design, 86, 1575-1578.
  • [6] Simchi, A., Petzoldt, F. (2009). Cosintering of Powder Injection Molding Parts Made from Ultrafine WC-Co and 316L Stainless Steel Powders for Fabrication of Novel Composite Structures. Metallurgical and Materials Transactions A, 41, 233-241.
  • [7] Zhang, S.X., Ong, Z.Y., Li, T., Li, Q.F., Pook, S.F. (2010). Ceramic composite components with gradient porosity by powder injection moulding. Materials & Design, 31, 2897-2903.
  • [8] Dourandish, M., Simchi, A. (2009). Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding. Journal of Materials Science, 44, 1264-1274.
  • [9] Ruh, A., Hanemann, T., Heldele, R., Piotter, V., Ritzhaupt-Kleissl, H.-J., Hausselt, J., Hanemann, T., Heldele, R., Hausselt, J. (2011). Development of Two-Component Micropowder Injection Molding (2C MicroPIM): Characteristics of Applicable Materials. International Journal of Applied Ceramic Technology, 8, 194-202.
  • [10] Ruh, A., Piotter, V., Plewa, K., Ritzhaupt-Kleissl, H.-J., Haußelt, J. (2010). Effects of material improvement and injection moulding tool design on the movability of sintered two-component micro parts. Microsystem Technologies, 16, 1989-1994.
  • [11] Gal, C.W., Han, S.S., Han, J.S., Lin, D., Park, S.J. (2019). Investigation of stainless steel 316L/zirconia joint part fabricated by powder injection molding. International Journal of Applied Ceramic Technology, 16, 315-323.
  • [12] Koçak, H., Kamran, S., Yılmaz, O., Karataş, Ç. (2018). Nikel Ara Katman Kullanılarak İnsörtlü Toz Enjeksiyon Kalıplama Yöntemiyle WC-Co/HSS Kompozit Parça Üretiminin Araştırılması. GU J Sci Part C, 6, 374-384.
  • [13] Liu, Z.Y., Kent, D., Schaffer, G.B. (2009). Powder Injection Molding of Al-(Steel and Magnet) Hybrid Components. Metallurgical and Materials Transactions A, 40, 2785-2788.
  • [14] Kurt, A., Uygur, I., Ateş, H. (2007). Effects of temperature on the weldability of powder metal parts joined by diffusion welding. Mater Sci Forum, 546-549, 667–670.
  • [15] Heng, S.Y., Muhamad, N., Sulong, A.B., Fayyaz, A., Amin, S.M. (2013). Effect of sintering temperature on the mechanical and physical properties of WC–10%Co through micro-powder injection molding (μPIM). Ceramics International, 39, 4457-4464.