Manyetize Edilmiş Su Kullanılarak Beton Üretimi

Dünyada ve özellikle gelişmiş ülkelerde beton, ekonomik olması, üretiminin kolaylığı, istenilenşeklin verilebilmesi ve özellikle dayanım ve durabilite gibi mühendislik üstünlükleri nedeniyleen çok tercih edilen yapı malzemesidir. Sürekli artan beton üretimi neticesinde bu alanda yapılanbilimsel araştırmalarda hızlı bir ivme kazanmıştır. Bu çalışmada, manyetize edilmiş su ile üretilenbeton ile normal karışım suyu ile üretilen geleneksel beton kıvam ve basınç dayanımı açısındankarşılaştırılmıştır. Manyetize edilmiş su kullanılarak üretilen betonların su ihtiyacı azalmış vesu/çimento oranı azalması neticesinde basınç dayanımı artış göstermiştir. Beton üretimindekullanılan karışım suyunun manyetize edilerek kullanılması ile prefabrik ve hazır betonüreticilerine yeni bir bakış açısı kazandırılarak daha ekonomik ve kaliteli beton üretim olanağısunulmuştur.

Concrete Production with Using Magnetized Water

In the world and especially in developed countries, concrete is the most preferred building material due to its economical efficiency, ease of production, giving the desired shape and especially its engineering advantages such as strength and durability. As a result of the constantly increasing concrete production, this field of scientific researches has gained a rapid acceleration. In this study, concrete sample produced with magnetized water is compared to conventional concrete produced with normal mixing in terms of consistency and compressive strength. The water requirement of concretes produced using magnetized water has decreased and the compressive strength has increased as a result of the decrease in water / cement ratio. With the use of the mixture water used in concrete production by magnetizing, prefabricated and readymixed concrete producers have been given a new perspective and provided more economical and quality concrete production opportunities.

___

  • [1] Gholizadeh M., Arabshahi H. The effect of magnetic water on strength parameters of concrete. Journal of Engineering and Technology Research, 3(3), 77-81, (2011).
  • [2] Furu T, Schercliff HR, Ashby MF. The interaction between the microstructural variables subgrain size and metals. Materials Science Forum, 43: 217-222, (2006).
  • [3] Su N, Wu, YH., Mar CY. Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cement and Concrete Research, 30(4), 599-605 (2000).
  • [4] Karam H. and Al-Shamali O. Effect of Using Magnetized Water on Concrete Properties. Third International Conference on Sustainable Construction Materials and Technologies, (2013). available at: http://www.claisse.info/Proceedings.htm
  • [5] Afshin H, Gholizadeh M., Khorshidi N. Improving mechanical properties of high strength concrete by magnetic water technology. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 17, 74–79, 2010.
  • [6] Su N. and Wu CF. Effect of magnetic field treated water on mortar and concrete containing fly ash. Cement and concrete composites, 25(7), 681-688, (2003).
  • [7] Stafford L. “The Mechanism of the Vortex Water Energy System”, Helping Agriculture & the Environment through the 21st Century, Fluid Energy Australia, (1996).
  • [8] M Ahmed S. Effect of magnetic water on engineering properties of concrete. AL-Rafdain Engineering Journal, 17(1), 71-82, (2009).
  • [9] Gabrielli C, Jaouhari R., Maurin G., and Keddam M. Magnetic water treatment for scale prevention. Water Research, 35(13), 3249-3259 (2001).
  • [10] Kronenberg K. Experimental evidence for effects of magnetic fields on moving water. IEEE Transactions on magnetics, 21(5), 2059-2061, (1985).
  • [11] Al-Qahtani H. Effect of magnetic treatment on Gulf seawater. Desalination, 107(1), 75-81, (1996).
  • [12] Jain A, Laad A., Singh K., Murari K., and Student UG. Effect of magnetic water on properties of concrete. International Journal of Engineering Science, 11864, (2017).
  • [13] Reddy BSK, Ghorpade VG., Rao HS. Effect of magnetic field exposure time on workability and compressive strength of magnetic water concrete. International Journal of Advanced Engineering and Technology, 120, 122, (2013).
  • [14] Bharath S, Subraja S., ArunKumar P. Influence of magnetized water on concrete by replacing cement partially with copper slag. Journal of Chemical and Pharmaceutical Sciences, 9(4), 2791-2795, (2016).
  • [15] TS EN 934-2+A1. Kimyasal katkılar - Beton, harç ve şerbet için - Bölüm 2: Beton kimyasal katkıları - Tarifler, gerekler, uygunluk, işaretleme ve etiketleme. Türk Standardları Enstitüsü, Ankara, (2013).
  • [16] Manjupriya T, & Malathy R. Experimental investigation on strength and shrinkage properties of concrete mixed with magnetically treated water. Magnesium, 290, 195, (2016).
  • [17] TS EN 12350-6. Beton - Taze beton deneyleri - Bölüm 6: Yoğunluk. Türk Standardları Enstitüsü, Ankara, (2019).
  • [18] TS EN 12350-2. Beton - Taze beton deneyleri - Bölüm 2: Çökme (slump) deneyi. Türk Standardları Enstitüsü, Ankara, (2019).
  • [19] TS EN 12390-3. Beton - Sertleşmiş beton deneyleri - Bölüm 3: Deney numunelerinin basınç dayanımının tayin. Türk Standardları Enstitüsü, Ankara, (2019).
  • [20] Abdel-Magid, T. I. M., Hamdan, R. M., Abdelgader, A. A. B., & Omer, M. E. A. Effect of magnetized water on workability and compressive strength of concrete. Procedia engineering, 193, 494-500, (2017).