Önceden Tasarlanmış Elektromobil Aracın Çarpışma Analizi

Ulaştırma sektöründe yaygın olarak kullanılan içten yanmalı motorların enerji kaynağı olan fosilyakıtlara olan ihtiyaç sürekli artmasına rağmen rezervler ise sürekli olarak azalmaktadır. Bununlabirlikte yakıt yanma reaksiyonu sonucu egzoz gazı emisyonlarının etkisi ile çevreye büyükzararlar verilmektedir. Bu nedenler ile alternatif enerji kaynakları ile çalışan araçlar geliştirilmeyebaşlanmıştır. Bu kapsamda, günümüzde tamamen elektrikli araç geliştirilmesi çalışmalarıyapılmaktadır. Jant içi elektrik motoru çalışmaları ise tamamen elektrikli araç geliştirmelerindenbirisidir. Bu çalışmada, önceden tasarlanmış bir elektromobil aracın düz sert bir duvara öndençarpışması, ANSYS Workbench LS-DYNA bilgisayar destekli mühendislik (CAE) yazılımıaracılığı ile numerik olarak incelenmiştir. Analiz, yapısı gereği zamana bağlı dinamik bir analizolduğundan dolayı açık (İng. Explicit) sonlu elemanlar yöntemi kullanılarak icra edilmiştir. Araçmodeli içine kukla model yerleştirilerek kukla modelin baş, göğüs ve uyluk kemiklerindeçarpışma etkisi ile oluşan ivme, kuvvet ve sapma değerleri verileri elde edilmiştir. Elde edilenveriler, çeşitli otoriteler tarafından kabul görmüş olan yaralanma kritik sınır değerleri ilekarşılaştırılarak kukla modelin yaralanma durumu ile ilgili çıkarımlarda bulunulmuştur.

Crash Analysis of a Pre-Engineered Electromobile Vehicle

Although the need for fossil fuels, which is the energy source of internal combustion engines that are widely used in the transportation sector, increases continuously, the reserves are continuously decreasing. However, the fuel combustion reaction results in large damages to the environment due to effects of exhaust gas emissions. For these reasons, vehicles that work with alternative energy sources are being developed. In this context, the development of fully electric vehicles is being carried out today. In-wheel electric motor studies are one of the most fully electric vehicle developments. In scope of this study, frontal collision of a pre-engineered electromobile vehicle to straight rigid wall is examined via ANSYS Workbench LS-DYNA computer aided engineering (CAE) software. Since the analysis is a time-dependent dynamic analysis due to its structure, it has been performed by using explicit finite element method. The data of the acceleration, force and deflection values formed by collision effect on the head, chest and femur of the dummy were obtained by placing dummy into the vehicle model. The data obtained were compared with the critical limit values accepted by various authorities and the inferences were made regarding the injury status of dummy.

___

  • [1] T. Ambati, K.V.N.S. Srikanth, P. Veeraraju, Simulation of Vehicular Frontal Crash-Test, Int. J. Appl. Res. Mech. Eng. (2012) 2231–5950. doi:10.13140/RG.2.2.11183.38560.
  • [2] L. Berzi, N. Baldanzini, D. Barbani, M. Delogu, R. Sala, M. Pierini, Simulation of Crash Events for an Electric Four Wheel Vehicle, Procedia Struct. Integr. 12 (2018) 249–264. doi:10.1016/j.prostr.2018.11.090.
  • [3] G. Zhao, L. Xie, Y. Guo, J. Li, Analysis and Evaluation on the Rear-End Crash of the Car with a Dummy, in: 2009 Int. Conf. Meas. Technol. Mechatronics Autom., IEEE, 2009: pp. 475–478. doi:10.1109/ICMTMA.2009.385.
  • [4] AAAM, The Abbreviated Injury Scale (AIS), https://www.aaam.org/abbreviated-injury-scale-ais/ (Erişim tarihi: 19 Mayıs 2019).
  • [5] EEVC Working Group 14 Report, Development of Test Procedure for Energy-absorbing Front Underrun Protection Systems for Trucks, 1996.
  • [6] B. McHenry, Head Injury Criterion and the ATB, ATB Users’ Gr. (2004) 1–8.
  • [7] C.W. Gadd, Criteria for Injury Potential, in: Impact Accel. Stress Symp., National Academy of Science, Washington DC, 1962: pp. 141–144.
  • [8] J. Versace, A Review of the Severity Index, in: SAE Tech. Pap., SAE International, 1971. doi:10.4271/710881.
  • [9] R. Eppinger, E. Sun, F. Bandak, M. Haffner, N. Khaewpong, M. Maltese, S. Kuppa, T. Nguyen, E. Takhounts, R. Tannous, A. Zhang, R. Saul, Development of improved injury criteria for the assessment of advanced automotive restraint systems–II, Natl. Highw. Traffic Saf. Adm. (1999). doi:10.1080/08993408.2013.838066.
  • [10] P. Prasad, H.J. Mertz, The Position of the United States Delegation to the ISO Working Group 6 on the Use of HIC in the Automotive Environment, in: SAE Tech. Pap., SAE International, 1985. doi:10.4271/851246.
  • [11] V.R. Hodgson, L.M. Thomas, Breaking Strength of the Human Skull Versus Impact Surface Curvature, Wayne State Univ. (1977).
  • [12] V.R. Hodgson, L.M. Thomas, J. Brinn, Concussion Levels Determined by HPR Windshield Impacts, in: SAE Tech. Pap., SAE International, 1973. doi:10.4271/730970.
  • [13] C. Got, A. Patel, A. Fayon, C. Tarrière, G. Walfisch, Results of Experimental Head Impacts on Cadavers: The Various Data Obtained and Their Relations to Some Measured Physical Parameters, in: SAE Tech. Pap., SAE International, 1978. doi:10.4271/780887.
  • [14] C. Tarriere, G. Walfisch, A. Fayon, C. Got, F. Guillon, A. Patel, J. Bureau, Acceleration, Jerk and Neck Flexion Angle: Their Respective Influences on the Occurrence of Brain Injury, ISO, TC 22, SC 12, GT-6 (USA-13), Doc. No. 118. (1982).
  • [15] E. Hertz, A note on the head injury criterion (HIC) as a predictor of the risk of skull fracture, Assoc. Adv. Automot. Med. (1993).
  • [16] V.K. Lau, D.C. Viano, Influence of impact velocity and chest compression on experimental pulmonary injury severity in rabbits, J. Trauma - Inj. Infect. Crit. Care. (1981). doi:10.1097/00005373-198112000-00003.
  • [17] J.D. Horsch, J.W. Melvin, D.C. Viano, H.J. Mertz, Thoracic Injury Assessment of Belt Restraint Systems Based on Hybrid III Chest Compression, in: SAE Tech. Pap., SAE International, 1991. doi:10.4271/912895.
  • [18] J.Y. Foret-Bruno, F. Hartemann, C. Thomas, A. Fayon, C. Terrière, C. Got, A. Patel, Correlation Between Thoracic Lesions and Force Values Measured at the Shoulder of 92 Belted Occupants Involved in Real Accidents, in: SAE Tech. Pap., SAE International, 1978. doi:10.4271/780892.
  • [19] N. Yoganandan, D. Skrade, F.A. Pintar, J. Reinartz, A. Sances, Thoracic Deformation Contours in a Frontal Impact, in: SAE Tech. Pap., SAE International, 1991. doi:10.4271/912891.
  • [20] H.J. Mertz, A.L. Irwin, J.W. Melvin, R.L. Stanaker, M.S. Beebe, Size, Weight and Biomechanical Impact Response Requirements for Adult Size Small Female and Large Male Dummies, in: SAE Tech. Pap., SAE International, 1989. doi:10.4271/890756.
  • [21] S. Solmaz, S. Üzüm, Gtech-Revolution Yarış Takımı Tübitak Alternatif Enerjili Araç Yarışları Teknik Tasarım Raporu.