Düşük Süpürme Açısına Sahip Delta Kanat Modeli Üzerinde Oluşan Aerodinamik Karakteristiklerin İncelenmesi

Aerodinamik, delta kanatlar ve mikro hava araçları (MAVs) da dahil olmak üzere basitleştirilmiş modeller ile temsil edilebilen insansız savaş hava araçlarında (UCAVs), son yıllarda önemli bir yer almıştır. Delta kanatlar üzerinde oluşan girdap dinamiği ve bu girdapsal akışın kanadın performansına etkileri kilit bir rol haline gelmiştir. Bu çalışmanın amacı düşük süpürme açısına sahip delta kanat (? = 510) üzerinde oluşan akışın fiziğini ve aerodinamik performansını boya görüntüleme ve kuvvet ölçüm sistemi kullanarak anlamaktır. Farklı hücum açılarında, 50

Investigation of Aerodynamic Characteristics over Non-Slender Delta Wing

The aerodynamics of unmanned combat air vehicles (UCAVs), which can be represented by simplified planforms, including delta wings, and micro air vehicles (MAVs) have taken important place in recent years. Vortex dynamics over delta wing and the effects on delta wing performance have become an important key role. The aim of this investigation is to underlying flow physics and to understand aerodynamic performance over non-slender diamond wing having low sweep angle (Λ = 510) by using dye flow visualization and force measuring systems (Submersible S Beam Junior Load Cell and two torque sensors). The flow visualization of vortex flow structure, the formation of the vortex breakdown, lift and drag force (FL and FD) as aerodynamic forces, over the wing in terms of the different angle of attacks, α, with in the range of 50≤ α ≤ 300were studied under static condition. Force measurements and dye flow visualization are carried out in a water tunnel to explain the dynamic characteristics of the non-slender wing model. Experimental investigation includes the time-averaged velocity components for dye-visualization, the coefficients of lift and drag force (CL and CD), for aerodynamic performance with different angle of attacks. It was concluded that vortex breakdown occurred far from the trailing-edge of the wing at low angle of attack. The results show that aerodynamic lift and drag coefficient, and pitching moment are strongly affected by the vortex interactions as the angle of attack changes. CL, and CD, are also affected by the vortex breakdown and stall condition for different angle of attacks

___

  • [1] Rockwell, D., “Vortex-Body Interactions. Annual Review of Fluid Mechanics”, Vol.-J-30, pp. 199- 229, 1998.
  • [2] Menke, M., and Gursul, I., “Unsteady Nature of Leading Edge Vortices”, Physics of Fluids, Vol. 9, No, 10, pp. 2610-2616,1997.
  • [3] Akilli, H., Sahin, B., and Rockwell, D., “Control of Vortex Breakdown by a Transversely-Oriented Wire”, Physics of Fluids, Vol.13, No.2, pp.452-463, 2001.
  • [4] Sahin, B., Akilli, H., Lin, J.-C., and Rockwell, D., “Vortex Breakdown-Edge Interaction: Consequence of Edge Oscillations”, AIAA Journal, Vol.39, No.5, pp.865-876, 2001.
  • [5] Ozgoren, M., Sahin, B., and Rockwell, D., “Vortex Breakdown from a Pitching Delta Wing Incident Upon a Plate: Flow Structure as the Origin of Buffet Loading”, Journal of Fluids and Structures, Vol.16, No.3, pp.295-316, 2002.
  • [6] Gordnier, R. E, and Vısbal MR., “Higher-order compact difference scheme applied to the simulation of a low sweep delta wing flow. AIAA 2003-0620”, 41st AIAA Aerospace Sciences Meeting and Exhibit, 6–9 January 2003, Reno, NV., 2003.
  • [7] Matsuno, T., and Nakamura, Y., “Self-Induced Roll Oscillation of 45 Degree Delta Wings”, 38th AIAA Aerospace Sciences Meeting and Exhibit, 2000.
  • [8] Taylor, G. S., Schnorbus, T., and Gursul, I., “An Investigation of Vortex Flows over Low Sweep Delta Wings”, AIAA-2003-4021, AIAA Fluid Dynamics Conference, 23-26 June, Orlando, FL., 2003.
  • [9] Elkhoury, M. and Rockwell, D., “Visualized Vortices on Unmanned Combat Air Vehicles Planform: Effect of Reynolds Number”, Journal of Aircraft, Vol. 41, No. 5, pp. 1244-1246, 2004.
  • [10] Elkhoury, M., Yavuz, M. M. and Rockwell, D., “Near-Surface Topology of a Unmanned Combat Air Vehicles Planform: Reynolds Number Dependence”, Journal of Aircraft, Vol. 42, No. 5, September/October, 2005, 1318-1330, 2005.
  • [11] Gursul, I., Gordnier, R. and Vısbal, M., “Unsteady aerodynamics of nonslender delta wings”, Progress in Aerospace Sciences 41, pp.515–557, 2005.
  • [12] Yanıktepe, B., and Rockwell D., “Flow structure on a delta wing of low sweep angle”, AIAA Jornal, 42(3):513–23, 2004.
  • [13] Yanıktepe, B., and Rockwell D., “Flow Structure on Diamond and Lambda Planforms: Trailing-Edge Region”, AIAA Journal, Vol. 43, No. 7, pp. 1490-1500,2005.
  • [14] Yavuz M. M., “Transformation of flow structure on a delta wing of moderate sweep angle during pitch-up maneuver,” Journal of Fluids and Structures, vol. 33, pp. 59-69, 2012..
  • [15] Sahin B., Yayla S., Canpolat C., and Akilli H., "Flow structure over the yawed nonslender diamond wing", Aerospace Science and Technology, vol. 23, no. 1, pp.108-119, 2012.
  • [16] Canpolat C., Yayla S., Sahin B., and Akilli H., "Observation of the Vortical Flow over a Yawed Delta Wing", Journal of Aerospace Engineering, vol. 25, no. 4, pp. 613-626, 2012.
  • [17] Lee M. and Ho C.,M., “Lift force of delta wings, Applied Mech.Rev.”, Vol. 43,No. 9, pp. 209-221, 1990.
  • [18] Verhaagen N. G., “Effects of LeadingEdge Radius on Aerodynamic Characteristics of 50o Delta Wings,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, OrlandoFlorida,2010.
  • [19] Verhaagen N. G., “Flow over 50 o Delta Wings with Different Leading-Edge Radii,” 49th AIAA Aerospace Sciences Meeting İncluding the New Horizons Forum and Aerospace Exposition, Orlando-Florida, 2011.
  • [20] Waszak, R. M., Jenkıns, N. L., Ifju, P., “Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle,” AIAA Paper 2001-4005, presented at the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Montreal,Canada, Aug. 6- 9, 2001.
  • [21] Lian, Y., Shyy, W., “Numerical Simulations of Membrane Wing Aerodynamics for Micro Air Vehicle Applications”, Journal of Aircraft, Vol. 42, No. 4, pp. 865-873, 2005.
  • [22] Ho, S., Nassef, H., Pornsinsirirak, Tai, YC., and Ho, C-M., “Unsteady Aerodynamics and Flow Control for Flapping WingFlyers,” Progress in Aerospace Sciences, Vol. 39, pp. 635- 681, 2003.
  • [23] Altun M. and İyigün İ., “Dynamic Stability derivatives of a manuevering combat aircraft model”, Journal of Aeronautics and Space Technologies, Vol. 1 No. 3, pp.19-27, 2004.
  • [24] Kawazoe H., and Kato S, “Effects of Leading Edge Separation Vortex of Flexible Structure delta Wing on Its Aerodynamic Characteristics”, JSME International Journal, Vol.49, No. 4, pp. 1049-1055., 2006.
  • [25] Şahin B., Akıllı H., Öztürk N.A., Karakuş C., Kahraman A., Akar A., Yanıktepe B., Özalp C. ve Gürlek C., "Akışkanlar mekaniği uygulamalarında parçacık görüntülemeli hız ölçme tekniği (PIV)", Ç.Ü. Müh. Mim. Fak. Dergisi, Cilt:18, Sayı: Özel sayı, s:103-111, 2003.
  • [26] Yanıktepe B, Ozalp C, Sahin B, Cag S, “Experimental Ivestigation of Surface Flow Structure over Non-Slendar Diamond Wing”, 7th International Exergy, Energy and Environment Symposium (IEEES7-2015, ENSIAME-UVHC, Valenciennes, France, p 51, 27-30 April, 2015.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü