Kritik Üstü Açık Kanal Akımının Detached Eddy ve Large Eddy Simülasyon ile Sayısal Modellenmesi

Kritik üstü açık kanal akımının üç boyutlu sayısal analizi, sonlu hacimler yöntemine dayalı ANSYS-Fluent ile yapılmıştır. Sayısal hesaplamalarda türbülanslı akımın karakteristiklerinin belirlenmesinde Large Eddy ve Realizable k-? tabanlı Detached Eddy Simülasyonu kullanılmıştır. Sayısal hesaplamalarda su yüzü profili, Akışkan Hacimleri Yöntemi ile elde edilmiştir. Kritik üstü akımın hız alanı Lazer Doppler Anemometresi kullanılarak ölçülmüştür. Sayısal modellerden elde edilen akım hızları ve su yüzü profilleri deneysel ölçümlerle karşılaştırılmış, Detached Eddy Simülasyon modelinin hız alanının hesaplanmasında ve su yüzü profilinin belirlenmesinde Large Eddy Simülasyon modeline göre daha başarılı olduğu görülmüştür

Numerical Modeling of Supercritical Open Channel Flow with Detached Eddy and Large Eddy Simulation

Three-dimensional numerical analysis of supercritical open channel flow is performed by ANSYS FLUENT-based on the finite volume method. In the numerical analysis of supercritical turbulent flow, Large Eddy Simulation and Detached Eddy Simulation based on the Realizable k- turbulence models are used in order to determine turbulence characteristics. The free surface profile is computed using Volume of Fluid method. The velocity field of supercritical open channel flow is measured using Laser Doppler Anemometry (LDA). Computational results for velocities and free surface profiles are compared with measured data. Comparisons show that the Detached Eddy Simulation model is more successful than Large Eddy Simulation in predicting the velocity field and free surface profiles

___

  • 1. Kirkgöz, M. S., Aköz, M. S., ve Öner, A. A., (2008) "Experimental and Theoretical Analyses of TwoDimensional Flows Upstream of Broad-Crested Weirs", Canadian Journal of Civil Engineering, 35(9): p. 975-986.
  • 2. Akoz, M. S. ve Kirkgoz, M. S., (2009) "Numerical and experimental analyses of the flow around a horizontal wall-mounted circular cylinder", Transactions of the Canadian Society for Mechanical Engineering, 33(2): p. 189-215.
  • 3. Gumus, V., ve ark., (2015) "Numerical Modeling of Submerged Hydraulic Jump from a Sluice Gate", Journal of Irrigation and Drainage Engineering, 142(1): p. 04015037.
  • 4. Yüce, M. I., Al-Babely, A. A., ve Al-Dabbagh, M. A., (2015) "Flow simulation over oblique cylindrical weirs", Canadian Journal of Civil Engineering, (ja).
  • 5. Xu, C.-y., Chen, L.-w., ve Lu, X.-y., (2007) "Largeeddy and detached-eddy simulations of the separated flow around a circular cylinder", Journal of Hydrodynamics, Ser. B, 19(5): p. 559-563.
  • 6. Constantinescu, G., Koken, M., ve Zeng, J., (2011) "The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation", Water Resources Research, 47(5).
  • 7. Nasif, G., Barron, R., ve Balachandar, R., (2014) "DES evaluation of near-wake characteristics in a shallow flow", Journal of Fluids and Structures, 45: p. 153-163.
  • 8. Hassanzadeh, R., Sahin, B., ve Ozgoren, M., (2011) "Numerical investigation of flow structures around a sphere", International Journal of Computational Fluid Dynamics, 25(10): p. 535- 545.
  • 9. Gholami, A., ve ark., (2014) "Experimental and numerical study on velocity fields and water surface profile in a strongly-curved 90 open channel bend", Engineering Applications of Computational Fluid Mechanics, 8(3): p. 447-461.
  • 10. Aköz, M. S., Gümüs, V., ve Kırkgöz, M. S., (2014) "Numerical Simulation of Flow over a Semicylinder Weir", Journal of Irrigation and Drainage Engineering, 140(6).
  • 11. ANSYS, (2012) "Fluent Theory Guide, ANSYS Inc. ". Vol. 5, p.
  • 12. Jiang, X. ve Lai, C.-H., (2016) "Numerical techniques for direct and large-eddy simulations". CRC Press, p.
  • 13. Smagorinsky, J., (1963) "General circulation experiments with the primitive equations: I. the basic experiment*", Monthly weather review, 91(3): p. 99-164.
  • 14. Hirt, C. W. ve Nichols, B. D., (1981) "Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries", Journal of Computational Physics, 39(1): p. 201-225.
  • 15. ANSYS, (2012) "Fluent Users Guide, ANSYS Inc. ". USA, p. 1243-1389.
  • 16. Çelik, I. B., ve ark., (2008) "Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications", Journal of Fluids Engineering-Transactions of the Asme, 130(7).
  • 17. Roache, P. J., (1998) "Verification of Codes and Calculations", Aiaa Journal, 36(5): p. 696-702.
  • 18. Kirkgöz, M. S. ve Ardiclioglu, M., (1997) "Velocity profiles of developing and developed open channel flow", Journal of Hydraulic Engineering, 123(12): p. 1099-1105.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü