Radyosyonun serum demir, bakır ve protein oksidasyon düzeylerine etkisi

Bir çok hastalığın etyopatogenezinde rol oynadığı düşünülen proteinlerin oksidatif modifikasyonunu analiz etmek amacıyla en sık kullanılan yöntem protein oksidasyon ürünü olan karbonil gruplarının tayinidir. Biz de çalışmamızda, radyasyonun serum üzerindeki etkisini göstermek amacıyla protein oksidasyon ürünü olan karbonil grubu düzeylerini ve “metallerin katalizlediği oksidasyon” (metal-catalyzed oxidation, MCO) sistemleri aracılığıyla protein oksidasyonunu artırdığı bilinen demir (Fe) ve bakır (Cu) düzeylerini araştırmayı amaçladık. Gereç ve Yöntemler: Kobaylara radyasyon ve antioksidan (N-asetilsistein, NAC) uygulamaları sonrasında serum Fe, Cu ve protein oksidasyon düzeyleri analiz edildi. Protein oksidasyon düzeyi Levine metoduna göre, Fe düzeyi otoanalizörde, Cu düzeyi ise atomik absorbsiyon cihazında ölçüldü. Bulgular: Radyasyonun, serum protein karbonil grubu, Fe ve Cu düzeylerinde istatiksel olarak anlamlı artışlara neden olduğu görüldü. Radyasyon öncesinde NAC verilen grupta ise tek başına radyasyon uygulanan gruba oranla oksidatif stresin azaldığı gözlendi. Kobaylara yalnızca NAC verilmesi de parametrelerde azalmaya neden oldu. Sonuç: Sonuç olarak radyasyonun muhtemelen reaktif oksijen türlerinin düzeyini artırarak, ayrıca Fe ve Cu düzeylerini yükseltip metal katalizli oksidasyon yoluyla proteinlerin oksidatif modifikasyonuna yol açtığı, NAC’ın ise radyasyonun oluşturduğu oksidasyona karşı koruyucu bir etkisinin olduğu tespit edildi.

Effect of radiation on the levels of iron, copper and protein oxidation in serum

The method used most commonly to analyze oxidative modification of the proteins playing a role in the etiopathogenesis of various diseases is the determination of carbonyl groups, which are the oxidative modification products. To demonstrate the effect of radiation on serum, we determined carbonyl group levels that are protein oxidation products and iron (Fe) and copper (Cu) levels, which are known to increase the protein oxidation, using metal-catalyzed oxidation (MCO) systems. Materials and Methods: After exposure to radiation and antioxidant (NAC), guinea pigs’ serum Fe, Cu and protein oxidation levels were analyzed. Protein oxidation was determined by the Levine method, Fe levels were measured using an autoanalyzer and Cu levels were determined using an atomic absorption apparatus. Results: Radiation was found to significantly increase the serum carbonyl groups, and Fe and Cu levels. Oxidative stress was observed to decrease in the group given NAC before radiation compared to the group receiving radiation only. Giving only NAC to the guinea pigs led to decreases in parameters. Conclusion: Radiation causes oxidative modification of the proteins by an increase in the levels of reactive oxygen radicals and Fe and Cu levels by creating metal catalysis, and NAC has a protective effect against oxidation due to radiation.

___

  • 1. Fagan JM, Sleczka BG, Sohar I. Quantitation of oxidative damage to tissue proteins. Int J Biochem Cell Biol 1999; 31: 751-757.
  • 2. Shringarpure R, Davies KJA. Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 2002; 32: 1084-1089.
  • 3. Stadtman ER. Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free Radic Biol Med 1990; 9: 315-325.
  • 4. Dalle-Donne I, Rossi R, Giustarini D ve ark. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 2003; 329: 23-38.
  • 5. Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res 2000; 33: 99-108.
  • 6. Dal-Pizzol F, Ritter C, Klamt F ve ark. Modulation of oxidative stress in response to gamma-radiation in human glioma cell lines. J Neurooncol 2003; 61: 89-94.
  • 7. Halliwel B, Gutteridge JMC. An introduction to oxygen toxicity and free radicals. Free Radic Biol Med (Clarendon Press, Oxford) 1999; 18–24.
  • 8. Davis WJr, Ronai Z, Tew KD. Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther 2001; 296: 1-6.
  • 9. Dringen R, Hamprecht B. N-acetylcystein, but not methionine or 2- oxothiazolidine-4-carboxylate, serves as cysteine donor for the synthesis of glutathione in cultured neurons derived from embryonal rat brain. Neurosci Lett 1999; 259: 79-82.
  • 10. Levine BL, Garland D, Oliver CN ve ark. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990; 186: 464-478.
  • 11. Artiss JD, Vinogradov S, Zak B. Spectrophotometric Study of Several Sensitive Reagents for Serum Iron. Clin Biochem 1981; 14: 311-315.
  • 12. Unicam Atomic Absorption Spectrophotometry Method, Manual; Unicam Limited, United Kingdom, 1994.
  • 13. Kamiryo T, Kassell NF, Thai QA ve ark. Histological chances in the normal rat brain after gamma irradiation. Acta Neurochir (Wien) 1996; 138: 451-459.
  • 14. Leibel SA, Sheline GE. Radiation therapy for neoplasms of the brain. J Neurosurg 1987; 66: 1-22.
  • 15. Hoshino K, Kamayema Y. Effects of low-dose X-irradiation in utero on the development of cortical architecture of the brain in mice. Environ Med 1983; 27: 29-34.
  • 16. Gajdusek CM, Tian H, London S ve ark. Gamma radiation effect vascular smooth muscle cells in culture. Int J Radiat Oncol Biol Phys 1996; 36: 821-828.
  • 17. Rousselot DB, Albert MG, Delattre J ve ark. Oxidation of low-density lipoproteins by OH and OH/O-2 free radicals produced by gamma radiolysis. Radiat Res 1993; 134: 271-282.
  • 18. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997; 272: 20313-20316.
  • 19. Cooper CE, Vollaard NBJ, Choueiri T ve ark. Exercise, free radicals and oxidative stress. Biochem Soc Trans 2001; 30: 280-285.
  • 20. Evans P, Lyras L, Halliwell B. Measurement of protein carbonyls in human brain tissue. Methods Enzymol 1999; 300: 145-156.
  • 21. Kojima M, Matsuki O, Nomura T ve ark. Elevation of antioxidant potency in the brain of mice by low-dose