Lipozomlar ve Genel Özellikleri

İlaç taşıyıcı sistemlerden birisi olan lipozomlar tek veya birçok tabakadan oluşan, aynı zamanda aralarında sulu bir faz bulunan küresel keseciklerdir. Hidrofilik ve hidrofobik bölgeler içermelerinden dolayı su ve yağda eriyen maddeleleri taşıyabilme, etken maddeleri kontrollü salıverme, bu etken maddeleri hedef bölgeye taşıyabilme ve biyolojik olarak yıkımlanma özelliklerine sahiptir. Esas olarak lipozomlar fosfolipitlerden oluşur; yapı ve içerik bakımından hücre zarına benzerlik göstermesi, zehirliliği olmaması ve kimyasal içeriklerinin araştırmacılarca ayarlanabilmesi sebeblerinden dolayı, araştırıcılar tarafından yıllardan beri model zar olarak kullanılmıştır. Lipozomlar son yıllarda en fazla araştırılan konulardan biridir. Bu derlemede lipozomların genel özellikleri, sınıflandırılmaları, hazırlanma şekilleri ve kullanım alanları ile ilgili bilgiler verilmektedir.

Liposomes and Their General Characteristics

Liposomes, one of the drug delivery systems, are spherical vesicles consisting of single or multiple layers and also having an aqueous phase between them. They are capable of transporting molecules in water and oil, controlled-releasing active ingredients , transporting these substances to the target region, and biologically degrading themselves, due to the hydrophilic and hydrophobic regions they contain. Liposomes, mainly composed of phospholipids, have been used as model membranes by scientists for many years because of their similarity to the cell membrane in terms of structure and content, lack of their toxicity and their chemical content that can be adjusted by the researchers. Liposomes are one of the most studied topics in recent years. In this review, information on related with general characteristics, classification, preparation forms and application areas of liposomes are given.

___

  • 1. Gürsoy Α, Pişkin E, Dortunç B, Peppas NA. Kontrollu İlaç Serbestleştiren Sistemler. İstanbul: Marmara Üniversitesi Eczacılık Fakültesi Yayınları Tekno Grafik-Ada Ofset, 1989. 2. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Dis 2005; 4: 145160.
  • 3. Taylan B, Özer AY. Application of liposomes in medicine. Pharmacia 1991; 31: 16-35. 4. Yurdakul A, Atav R. Lipozomların yapısı ve sınıflandırılması. Ege Üniversitesi Dergipak/Tekstil ve Konfeksiyon 2007; 17: 243-247.
  • 5. Barenholz Y, Gibbes D, Litman BJ, et al. A simple method for the preparation of homogeneous phospholipid vesicles. Biochem 1977; 16: 2806-2810.
  • 6. Barenholz Y. Liposome application: Problems and prospects. Cur Op Coll Int Sci 2001; 6: 66-77.
  • 7. Lasch J, Berdichevsky VR, Torchilin VP, et al. A method to measure critical detergent parameters-preparation of liposomes. Ann Biochem 1983; 133: 486-491.
  • 8. Coral G. Lipozom Protoplast Elektrofüzyon Metoduyla Aspergillus Niger Kökenli Glikoamilaz Geninin Saccharomyces cerevisiae Hücrelerine Aktarılması ve Ekspresyonu. Doktora Tezi, Mersin: Mersin Üniversitesi, Fen Bilimleri Enstitüsü, 2000.
  • 9. Wang B, Hu L, Siahaan TJ, Soltero R. Drug delivery: Principles and applications. 2nd Edition, Hoboken New Jersey: John Wiley & Sons Inc, 2005.
  • 10. Birdane YO, Baş AL. Damar içi yolla verilen serbest ve lipozomal ampisilinin kan farmakokinetik profillerinin karşılaştırılması. Kocatepe Veteriner Derg 2014; 7: 23-31.
  • 11. Lee J, Kwon HJ, Cho SH, et al. Marbofloxacinencapsulated microparticles provide sustained drug release for treatment of veterinary diseases. Mater Sci Engin 2016; 60: 511-517.
  • 12. Bozkır A, Koçyiğit S. Lipozomların fiziksel ve kimyasal stabilitelerinin incelenmesi. Ankara Üniversitesi Eczacılık Fakültesi Dergisi 1995; 24: 42-52.
  • 13. Alkan H. Lipozomlar II. ilaç taşıyıcısı olarak kullanılmaları. Farmasötik Bilimler Ankara Derneği (FABAD) Farmasötik Bilimler Dergisi 1983; 8: 197-212.
  • 14. Konings AWT. Lipid Peroxidation in liposomes. In Gregoriadis G. (Editor). Liposome Technology. Boca Raton: CRC Press, 1984: 141-161.
  • 15. Riaz M, Weiner Ν, Martin F. Liposomes. In: Lieberman HA, Rieger MM, Banker GS. (Editors). Pharmaceutical Dosage Forms Disperse Systems. Volume 2, New York: Marcel Dekker Inc, 1989; 567-602.
  • 16. Piraube C, Postaire E, Lize JM, Prognon P, Pradeau D. Evidence of chemical instability of phosfolipids in liposomes. Chem Pharm Bull 1988; 36: 4600-4602. 17. Weiner N, Martin F, Riaz M. Liposomes as drug delivery system. Drug Dev Ind Pharm 1989; 15: 1523-1524.
  • 18. Hunt CA, Tsang S. α-Tocopherol retards autooxidation and prolongs the shelf- life of liposomes. Int J Pharm 1981; 8: 101-110.
  • 19. Ausborn M, Nuhn P, Schreier Η. Stabilization of liposomes by freeze-thaw and lyophilization techniques: problems and opportunities. Eur J Pharm Biopharm 1992; 38: 133-139. 20. Grit M, Underberg WJM, Crommelin DJA. Hydrolysis of saturated soybean phosphatidyl choline in aqueous liposome dispersions. J Pharm Sci 1993; 82: 362-366.
  • 21. Arıca Β, Özer Υ, Hıncal AA. Primakin difosfat lipozomlarının stabilitesi üzerinde çalışmalar. Hacettepe Üniversitesi Eczacılık Fakültesi Dergisi 1994; 14: 39-49.
  • 22. Nassander UK, Steerenberg PA, Storm G, et al. In vivo targetting of OV-TL3 immunoliposomes to ascitic ovarian carcinoma cells (OVCAR-3) in athymic nude mice. Cancer Res 1995; 52: 646-653.
  • 23. Lopez-Berestein G, Fainstein V, Hopter R, et al. Liposomal Amphotericin B for the treatment of systemic fungal infections in patients with cancer. J Infect Dis 1985; 151: 704-710.
  • 24. Svenson CE, Popescu MC, Ginsberg RC. Liposome treatments of viral, bacterial and protozoal infections. Crit Rev Microbiol 1988; 15: 1-31.
  • 25. Egusquiaguirre S, Igartua M, Hernandez R, Pedraz J. Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Trans Oncology 2012; 14: 83-93.
  • 26. Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011; 31, 4: 295-302.
  • 27. Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nature Rev Cancer 2005; 5: 161-171.
  • 28. Vail DM, MacEwen EG, Kurzman ID, et al. Liposomeencapsulated muramyl tripeptide phosphatidylethanolamine adjuvant immunotherapy for splenic hemangiosarcoma in the dog: A randomized multiinstitutional clinical trial. Clin Cancer Res 1995; 1,10:1165-1170.
  • 29. Judson I, Radford JA, Harris M, et al. Randomised phase II trial of pegylated liposomal doxorubicin versus doxorubicin in the treatment of advanced or metastatic soft tissue sarcoma: a study by the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 2001; 37: 870877.
  • 30. Kleiter M, Tichy A, Willmann M, Pagitz M, Wolfesberger B. Concomitant liposomal doxorubicin and daily palliative radiotherapy in advanced feline soft tissue sarcomas. Vet Rad Ultrasound 2010; 51: 349-355.
  • 31. Aditya NP, Vathsala PG, Vieira V, Murthy RS, Souto EB. Advances in nanomedicines for malaria treatment. Adv Colloid Interf Sci 2013; 201: 1-17.
  • 32. Allahverdiyev AM, Kon KV, Abamor ES, et al. Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti-Infect Ther 2011; 9: 1035-1052. 33. Grace AN, Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles a brief study. Colloids Surf 2007; A 297: 63-70.
  • 34. Italia JL, Yahya MM, Singh D, Ravi Kumar MN. Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm Res 2009; 26: 1324-1331.
  • 35. Rastogi L, Kora AJ. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics. Mater Sci Eng C Mater Biol Appl 2012; 32: 1571-1577.
  • 36. Amaral AC, Bocca AL, Ribeiro AM, et al. Amphotericin B in poly (lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis. J Antimicrob Chemother 2009; 63: 526-533.
  • 37. Kamel AO, Awad GA, Geneidi AS, Mortada ND. Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS Pharm Sci Tech 2009; 10: 1427-1436.
  • 38. Mishra V, Mahor S, Rawat A, et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 2006; 14: 45-53.
  • 39. Ribeiro TG, Franca JR, Fuscaldi LL, et al. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. Int J Nanomedicine 2014; 9: 5341-5353.
  • 40. Gnanadhas DP, Ben Thomas M, Elango M, et al. Chitosan–dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chem 2013; 68: 2576-2586.
  • 41. Singh R, Smitha MS, Singh SP. The role of nanotechnology in combating multidrug resistant bacteria. J Nanosci Nanotechnol 2014; 14: 4745-4756.
  • 42. Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine 2014; 32: 327-37.
  • 43. Chen CW, Hsu CY, Lai SM, et al. Metal nanobullets for multidrug resistant bacteria and biofilms. Adv Drug Deliv Rev 2014; 78: 88-104.
  • 44. Forier K, Raemdonck K, De Smedt SC, et al. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release 2014; 190: 607-623.
  • 45. Tamilvanan S, Venkateshan N, Ludwig A. The potential of lipid and polymerbased drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Control Release 2008; 128: 2-22.
  • 46. New RRC, Chance SM, Thomas SC, et al. Nature antileshmanial activity of antimonials entrapped in liposomes. Nature 1978; 272: 55-56.
  • 47. Hrckova G and Velebny S. Comparative Biochemistry and Physiology Part C: Pharmacol Toxicol and Endoc 1994; 107: 71-77.
  • 48. Peng KT, Chen CF, Chu IM, et al. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 2010; 31: 5227-5236.
  • 49. Pillai RR, Somayaji SN, Rabinovich M, et al. Nafcillin loaded PLGA nanoparticles for treatment of osteomyelitis. Biomed Mater 2008; 3: 1-7.
  • 50. Cong Y, Quan C, Liu M, et al. Alendronate-decorated biodegradable polymeric micelles for potential bonetargeted delivery of vancomycin. J Bio Sci Polym Ed 2015; 26: 629-643.
  • 51. Uskokovic V and Desai TA. Phase composition control of calciumphosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. I. Preparation and drug release. J Biomed Mater Res 2013; A101: 14161426.
  • 52. Rathbone M, Brayden D. Controlled release drug delivery in farmed animals: commercial challenges and academic opportunities. Curr Drug Deliv 2009; 6: 383-390.
  • 53. Rose JS, Neal JM, Kopacz DJ. Extended-duration analgesia: update on microspheres and liposomes. Reg Anesth Pain Med 2005; 30: 275-285.
  • 54. Schmidt JR, Krugner-Higby L, Heath TD, Sullivan R, Smith LJ. Epidural administration of liposome encapsulated hydromorphone provides extended analgesia in a rodentmodel of stifle arthritis. J Am Assoc Lab Anim Sci 2011; 50: 507-512. 55. Grant GJ, Lax J, Susser L, et al. Wound infiltration with liposomal bupivacaine prolongs analgesia in rats. Acta Anaesthesiologica Scan 1997; 41: 204-207.
  • 56. Richard BM, Newton P, Ott LR et al. The safety of EXPAREL (bupivacaine liposome injectable suspension) administered by peripheral nerve block in rabbits and dogs. J Drug Deliv 2012; 1-10.
  • 57. Paul-Murphy JR, Krugner-Higby LA, Tourdot RL, et al. Evaluation of liposome encapsulated butorphanol tartrate for alleviation of experimentally induced arthritic pain in greencheeked conures. Am J Vet Res 2009; 70: 1211-19.
  • 58. Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP. Tumor-targeted liposomes: doxorubicin-loaded longcirculating liposomes modified with anti-cancer antibody. J Cont Release 2004; 100: 135-144.
  • 59. Krugner-Higby L, Smith L, Schmidt B, et al. Experimental pharmacodynamics and analgesic efficacy of liposomeencapsulated hydromorphone in dogs. J Am Anim Hosp Assoc 2011; 47: 185-195.
  • 60. Gregoriadis G. Immunological adjuvants: A role for liposomes. Immunol Today 1990; 11: 89-97.
  • 61. Cox JM, Pavic A. Advances in enteropathogen control in poultry production. J Appl Microb 2010; 108: 745-755.
  • 62. Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nature Rev Cancer 2012; 12, 1: 39-50.
  • 63. Nordly P, Madsen HB, Nielsen HM, Foged C. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Exp Op Drug Deliv 2009; 6: 657-672.
  • 64. Storni T, Kundig TM, Senti G, Johansen P. Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev 2005; 57: 333-355.
  • 65. Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv Drug Deliv Rev 2009; 61: 140157.
  • 66. Caracciolo G, Amenitsch H. Cationic liposome/DNA complexes: From structure to inter-actions with cellular membranes. Eur Biophysics J 2012; 41: 815-829.
  • 67. Li W, Watarai S, Iwasaki T, Kodama H. Suppression of Salmonella enterica serovar enteritidis excretion by intraocular vaccination with fimbriae proteins incorporated in liposomes. Dev Comp Immun 2004; 28: 29-38.
  • 68. Onuigbo EB, Okore VC, Ofokansi KC, et al. Preliminary evaluation of the immuno-enhancement potential of Newcastle disease vaccine formulated as a cationic liposome. Avian Path 2012; 41: 355-360.
  • 69. Lu JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009; 9: 325-341.
  • 70. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011; 3: 1377-97.
  • 71. Lukyanetz EA, Shkryl VM, Kravchuk OV, et al. Biomembranes. Bachelor of Business Adm 1999; 1: 206220.
  • 72. Card JW, Jonaitis TS, Tafazoli S, Magnuson BA. An appraisal of the published literature on the safety and toxicity of food-related nanomaterials. Crit Rev Toxicol 2011; 41: 22-51.
  • 73. Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 2012; 22: 693-700.
  • 74. Swain P, Nayak SK, Sasmal A, et al. Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World J Microbiol Biotechnol 2014; 30: 2491-2502.
  • 75. De Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomed 2008; 3: 133149.
  • 76. Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28: 1-13.
  • 77. Wang JJ, Zeng ZW, Xiao RZ, et al. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 2011; 6: 765-774.
  • 78. Alishahi A, Mirvaghefi A, Tehrani MR, et al. Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr Polym 2011; 86: 142-146.
  • 79. Fenaroli F, Westmoreland D, Benjaminsen J, et al. Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: direct visualization and treatment. ACS Nano 2014; 8: 7014-7026.
  • 80. Li L, Lin SL, Deng L, Liu ZG. Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. J Fish Dis 2013; 36: 987995.
  • 81. Rajesh Kumar S, Ishaq Ahmed VP, et al. Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass to protect from Vibrio (Listonella) anguillarum. Fish Shellfish Immunol 2008; 25: 47-56.
  • 82. Nicolau C, Cudd A. Liposomes as carriers of DNA. Crit Rev Therap Drug Carr Systems 1989; 6: 239-271.
  • 83. Lasic DD. Liposomes. Am Sci 1992; 80: 20-31.
Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi-Cover
  • ISSN: 1308-9323
  • Yayın Aralığı: Yılda 3 Sayı
  • Yayıncı: Prof.Dr. Mesut AKSAKAL
Sayıdaki Diğer Makaleler

Lipozomlar ve Genel Özellikleri

İzzet KARAHAN, Hasan SUSAR

Yenidoğan İshalli Buzağılarda Mortalite İndikatörü Olarak Kan Laktat, Glikoz, Total Protein ve Gama Glutamil Transferaz Seviyeleri

Uğur AYDOĞDU, Ramazan YILDIZ, İsmail ŞEN, Hasan GÜZELBEKTEŞ, Alparslan COŞKUN

Bıldırcın (Coturnix coturnix Japonica) Rasyonlarına Farklı Oranda Nane Yağı (Mentha piperita) Ġlavesinin Glandula Uropygialis Üzerine Etkisinin Morfometrik ve Histometrik Olarak Ġncelenmesi

Kürşat FİLİKCİ, İsmail DEMİRCİOĞLU, Bestami YILMAZ, Aydın DAŞ

Oktil-Siyanoakrilat ve Fibrin Yapıştırıcıların Ensizyonel Yara İyileşmesi Üzerindeki Etkileri

Aydın SAĞLIYAN, Abdulaziz GÜNDÜZ, Mustafa ÖZKARACA, Ali Said DURMUŞ

Bir Buzağı Fetüsünde Karşılaşılan Pulmoner Hipoplazi ve Anasarka Sendromu ile Palatoşizis Olgusu

Burak KARABULUT, Burak Fatih YÜKSEL, Kerem ERCAN, Canan AKDENİZ İNCİLİ, Cahit KALKAN

Karma Yeme İki Farklı Metot ile Korunan Esansiyel Yağ Karışımı İlavesinin Kronik Gürültüye Maruz Bırakılan Yumurtacı Bıldırcınlarda Performans ve Bazı Kan Parametreleri Üzerine Etkisi

Mehmet ÇİFTÇİ, Fadime TONBAK

Sıçanlarda Melatoninin Kronik Sodyum Nitrit Maruziyetine Karşı Koruyucu Etkileri

Gözde ATİLA USLU, Volkan GELEN, Hamit USLU, Mustafa MAKAV, Yasemen ADALI

Elazığ İlinde Vakum Ambalajlı ve Açıkta Satışa Sunulan Lor Peynirlerinin Kimyasal Özelliklerinin ve Mikrobiyolojik Kalitesinin Değerlendirilmesi

Ayşe SÖNMEZ, Mehmet ÇALICIOĞLU, Gökhan Kürşad İNCİLİ

İstanbul İlindeki Barınak Köpeklerinde Leishmania infantum’un Real-Time PCR ile Araştırılması

Özer AKGÜL, Yaşar Ali ÖNER, Şafak BAYIRLIOĞLU

Elazığ İli’nde Satışa Sunulan Hayvansal Peynir Mayalarının Bazı Kalite Özelliklerinin İncelenmesi

Bahri PATIR, Oğuz KAYA