Kemik Grefti Yerine Doğal Bir Biyoseramik: Deniz Mercanı

Kemik defektlerinin onarımı kritik bir sorun olmaya devam etmektedir. Kemik greftleri kullanımı kemik kırıklarının tedavisi ve kemik kayıplarının rejenerasyonu için standarttır. En çok kullanılan kemik greftleri otojen kemik greftleridir ancak bunların kullanımı ağrı, kan kaybı, enfeksiyon ve donör bölge morbiditesi gibi komplikasyonlara yol açabilir. Kemik greft yerine geçen materyallerin kullanımı kemik doku rejenerasyonunda etkili bir alternatif yaklaşımdır. Doğal ve sentetik biyoseramikler kemik greftleri yerine diş hekimliği ve ortopedi alanında sıklıkla kullanılmaktadır. Bu derlemede doğal koralin özellikleri ve kemik grefti olarak uygulamalarındaki son gelişmeler hakkında bilgiler verildi. Koral implantasyon deneyleri ve kemik defektlerinin tedavisi amacıyla yapılan çalışmaların sonuçları değerlendirildi.

A Natural Bioceramic as a Bone Graft Substitute: Coral

The reconstruction of bone defects remains a critical clinical problem. The use of bone grafts is the standard to treat bone fractures and regenerate lost bone. The most common bone graft used is the autogeneous bone graft, but its use can lead to complications such as pain, blood loss, infection and donor site morbidity. The use of bone graft substitute materials is an effective alternative approach to regenerate bone tissue. Natural and synthetic bioceramics are frequently used as bone grafts in dentistry and orthopaedics. In this review, information about natural coral properties and recent advances in the use of coral for applications in bone graft substitutes was provided. Coral implantation experiments and their consequences among the studies conducted for the treatment purpose of bone defects were evaluated.

___

  • 1. Durmuş AS, Eröksüz H. Subkondral defektlerde otojen spongiyöz kemik grefti ve koral implant uygulamalarının karşılaştırılması: Köpek diz ekleminde deneysel çalışma. Doğu Anadolu Bölgesi Araştırmaları Dergisi 2008; 6: 93-99.
  • 2. Durmuş AS, Ünsaldı E. Köpeklerde deneysel maddi kayıplı femur kırıklarında koral ve spongiyöz otogref uygulamalarının karşılaştırması. Fırat Üniversitesi Sağlık Bilimleri Dergisi 2001; 15: 101-112.
  • 3. Durmuş AS. Köpeklerde Deneysel Maddi Kayıplı Femur Kırıklarında Koral ve Spongiyöz Otogref Uygulamalarının Karşılaştırılması. Doktora Tezi, Elazığ: Fırat Üniversitesi Sağlık Bilimleri Enstitüsü, 2000.
  • 4. Hannouche D, Petite H, Sedel L. Current trends in the enhancement of fracture healing. J Bone Joint Surg (Br) 2001; 83B:157-164.
  • 5. Nandi S.K, Roy S, Mukherjee P et al. Orthopaedic applications of bone graft & graft substitutes: A review. Indian J Med Res 2010; 132: 15-30.
  • 6. Sarsılmaz F, Orhan N, Ünsaldı E, Durmuş AS, Colakoglu N. A polyethylene-high proportion hydroxyapatite implant and its investigation in vivo. Acta Bioeng Biomech 2007; 9: 9-16.
  • 7. Ünsaldı E, Bulut S, Özercan İ, Durmuş AS. Köpeklerde genu eklemindeki deneysel artrodez uygulamalarında kaynaşmanın uyarılması amacıyla koral ve spongiyöz otogref kullanımının karşılaştırılması. Veteriner Cerrahi Dergisi 2001; 7: 28-37.
  • 8. White RA, Weber JN, White EW. Replamineform: A new process for preparing porous ceramic, metal and polymer prosthetic materials. Science 1972; 176: 922-924.
  • 9. Arnaud E, Morieux C, Wybier M, de Vernejoul MC. Osteogenese induite par l’association: Facteur de croissance, colle fibrinogeneque et corail; vers un substitut de la greffe osseuse autologue. Etude Experimentale Chez le Lapin. Ann Chir Plast Esthet 1994; 39: 491-498.
  • 10. Guillemin G, Patat, L, Fournie Y, Chetail M. The use of coral as a bone graft substitute. J Biomed Mater Res 1987; 21: 557-567.
  • 11. Holmes RE, Mooney V, Bucholz R, Tencer A. A coralline hydroxyapatite bone graft substitute (preliminary report). Clin Orthop Rel Res 1984; 188: 256-262.
  • 12. Sartoris DJ, Gershuni DH, Akeson WH, Holmes RE, Resnick D. Coralline hydroxyapatite bone graft substitutes: Preliminary report of radiographic evaluation 1. Radiol 1986; 159: 133-137.
  • 13. Sartoris DJ, Holmes RE Resnick D. Coralline hydroxyapatite bone graft substitutes: Radiographic evaluation. J Foot Surg 1992; 31: 301-313.
  • 14. Sartoris DJ, Holmes RE, Bucholz RW, Mooney V, Resnick D. Coralline hydroxyapatite bone-graft substitutes in a canine metaphyseal defect model radiographic-histometric correlation. Invest Radiol 1986; 21: 851-857.
  • 15. Sartoris DJ, Holmes RE, Bucholz RW, Mooney V, Resnick D. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model radiographic-histometric correlation. Invest Radiol 1987; 22: 590-596.
  • 16. Sartoris DJ, Holmes RE, Bucholz RW, Resnick D. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model: radiographic features of failed and successful union. Skeletal Radiol 1986; 15: 642-647.
  • 17. Sartoris DJ, Holmes, RE, Tencer AF, Mooney V, Resnick D. Coralline hydroxyapatite bone-graft substitutes in a canine metaphyseal defect model: radiographicbiomechanical correlation. Skeletal Radiol 1986; 15: 635- 641.
  • 18. Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham AS. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: Radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci: Mater Med 2012; 23: 473-483.
  • 19. Bouchon C, Lebrun T, Rouvillain JL, Roudier M. The Caribbean Scleractinian corals used for surgical implants. Bull Inst Oceéanogr 1995; 14: 111-122.
  • 20. Holmes RE, Salyer KE. Bone regeneration in a coralline hydroxyapatite implant. Surg Forum 1978; 24: 611-612.
  • 21. Patat, JI, Guillemin G. Le corail naturel utilize comme biomateriau de substitution a la greffe osseuse. Ann Chir Plast Esthet 1989; 34: 221-225.
  • 22. Piecuch JF, Fedorka NJ. Results of soft-tissue surgery over implanted replamineform hydroxyapatite. J Oral Maxillofac Surg 1983; 41: 801-806.
  • 23. Piecuch JF, Topazian RG, Skoly S, Wolfe S. Experimental ridge augmentation with porous hydroxyapatite implants. J Dent Res 1983; 62: 148-154.
  • 24. Roux FX, Brasnu D, Menard M, et al. Madreporic coral for cranial base reconsruction. 8 years experience. Acta Neurochir Wien 1995; 133: 201-205.
  • 25. Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974; 247: 220-222.
  • 26. Shors EC. Coralline bone graft substitutes. Orthop Clin North Am 1999; 30: 599-613. 27. Souhrada L. Sea to surgery. Coral may be clinically useful. Hospitals 1989; 20: 38.
  • 28. Souyris F, Pellequer C, Payrot C, Servera C. Coral, a new biomedical material. Experimental and first clinical investigations on Madreporaria. J Maxillofac Surg 1985; 13: 64-69.
  • 29. Chen PY, Lin AYM, McKittrick J, Meyer MA. Structure and mechanical properties of crab exoskeletons. Acta Biomater 2008; 4: 587-596.
  • 30. Clarke SA, Walsh P, Maggs CA, Buchanan F. Designs from the deep: Marine organisms for bone tissue engineering. Biotechnol Adv 2011; 29: 610-617.
  • 31. Martina M, Subramanyam G, Weaver JC, et al. Developing macroporous bicontinuous materials as scaffolds for tissue engineering. Biomaterials 2005; 26: 5609-5616.
  • 32. Nandi SK, Kundu B, Mukherjee J, et al. Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration. Mater Sci Eng C Mater Biol Appl 2015; 49: 816-823.
  • 33. Oliveira JA, Grech JMR, Leonor IB, Mano JF, Reis RL. Calcium-phosphate derived from mineralized algae for bone tissue engineering applications. Mater Lett 2007; 61: 3495-3499.
  • 34. Begley CT, Doherty MJ, Mollan RA, Wilson DJ. Comparative study of the osteoinductive properties of bioceramic, coral and processed bone graft substitutes. Biomaterials 1995; 16: 1181-1185.
  • 35. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: An update. Injury 2005; 36: S20-S27.
  • 36. Light M, Kanat IO. The possible use of coralline hydroxyapatite as a bone implant. J Foot Surg 1991; 30: 472-476.
  • 37. Liu G, Zhang Y, Liu B et al. Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold. Biomaterials 2013; 34: 2655-2664.
  • 38. Louisia S, Stromboni M, Meunier A, Sedel L, Petite H. Coral grafting supplemented with bone marrow. J Bone Joint Surg (Br) 1999; 81B: 719-724.
  • 39. Rosen HM. Porous, Block Hydroxyapatite as an interpositional bone graft substitute in orthognathic surgery. Plast Reconst Surg 1989; 83: 985-990.
  • 40. Roux FX, Brasnu D, Loty B, George B, Guillemin G. Madreporic coral: A new bone graft substitute for cranial surgery. J Neurosurg 1988; 69: 510-513.
  • 41. Ben-Nissan B. Natural bioceramics: From coral to bone and beyond. Curr Opinion Solid State Mater Sci 2003; 7: 283-288.
  • 42. Emara SA, Gadallah SM, Sharshar AM. Evaluation of coral wedge and composite as bone graft substitutes to induce new bone formation in a dog tibial defect. J Am Sci 2013; 9: 526-537.
  • 43. Guillemin G, Meunier A, Dallant P et al. Comparison of coral resorpsion and bone apposition with two natural corals of different porosities. J Biomed Mater Res 1989; 23: 765-779.
  • 44. Holmes RE Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 1979; 63: 626- 633.
  • 45. Levet Y, Guero S, Guillemin G, Jost G. Utilisation du corail en remplacement des greffes osseuses en chirurgie faciale. Ann Chir Plast Esthet 1988; 33: 279-282.
  • 46. Issahakian S, Ouhayoun JP, Guillemin G, Patat JL. Le corail Madreporaire. Inf Dent 1987; 69: 2123-2132.
  • 47. Jahn AF. Experimental applications of porous (coralline) hydroxylapatite in middle ear and mastoid reconstruction. Laryngoscope 1992; 102: 289-299.
  • 48. Coughlin MJ, Grimes JS, Kennedy MP. Coralline hydroxyapatite bone graft substitute in hindfoot surgery. Foot Ankle Int 2006; 27: 19-22.
  • 49. Im HH, Park JH, Kim KN, et al. Organic-inorganic hybrids of hydroxyapatite with chitosan. Key Engineering Materials 2005; 17: 729-732.
  • 50. Pouliguen JC, Noat M, Verneret C, Guillemin G, Patat JL. Le corail substitue a l’ apport osseux dans l’artrodese vertebrale posterieure chez l’enfant. Rev Chir Orthop 1989; 75: 360-369.
  • 51. Papacharalambous SK, Anastasoff KI. Natural coral skeleton used as onlay for contour augmentation of the face. A Priliminary Report. Int J Oral Maxillofac Surg 1993; 22: 260-264.
  • 52. Green D, Howard D, Yang X, Kelly M, Oreffo ROC. Natural marine sponge fiber skeleton: A biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 2003; 9: 1159-1166.
  • 53. Laza AL, Jaber M, Miehe-Brendle J, et al. Green nanocomposites: Synthesis and characterization. J Nanosci Nanotechnol 2007; 7: 3207-3213.
  • 54. Luo ZB, Zhang QB, Zhang ZQ, et al. Performance of coralline hydroxyapatite in sinus floor augmentation: A retrospective study. Clin Oral Invest 2013; 17: 2003-2010.
  • 55. Lahaye M, Robic A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007; 8: 1765-1774.
  • 56. Bachle M, Hubner U, Kohal RJ, et al. Structure and in vitro cytocompatibility of the gastropod shell of Helix pomatia. Tissue Cell 2006; 38: 337-344.
  • 57. Hou R, Chen FL, Yang YW, et al. Comparative study between coral-mesenchymal stem cell-RHBMP-2 composite and autobone-graft in rabbit critical-sized cranial defect model. J Biomed Mater Res Part A 2007; 80A: 85- 93.
  • 58. Aliabadi A, Esfandiari A, Farahmand M, Mahjoor A, Mojaver S. Evaluation of the effects of bovine demineralized bone matrix and coralline hydroxyapatite on radial fracture healing in rabbit. J Cell Anim Biol 2012; 6: 109-114.
  • 59. Bensaid W, Oudina K, Viateau V, et al. De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model. Tissue Eng 2005; 11: 814- 824.
  • 60. Cai L, Wang Q, Gu C, et al. Vascular and microenvironmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering. Biomaterials 2011; 32: 8497-8505.
  • 61. Gao TJ, Lindholm TS, Kommonen B, et al. The use of a coral composite implant containing bone morphogenetic protein to repair a segmental tibial defect in sheep. Int Orthop 1997; 21: 194-200.
  • 62. Breton P, Freidel M. Hydroxyapatite en chirurgie orthognathique. Experimentation animale et applications cliniques. Rev Stomatol Chir Maxillofac 1993; 94: 115-119.
  • 63. Elsinger EC, Leal L. Coralline hydroxyapatite bone graft substitutes. J Foot Ankle Surg 1996; 35: 396-399.
  • 64. Ripamonti U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral. J Bone Joint Surg 1991; 73A: 692-703.
  • 65. Zhang YF, Wang YN, Shi B, Cheng XR. A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials 2007; 28: 1515-1522.
  • 66. Mygind T, Stiehler M, Baatrup A, et al. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 2007; 28: 1036-1047.
  • 67. Harris CT, Cooper LF. Comparison of bone graft matrices for human mesenchymal stem cell-directed osteogenesis. J Biomed Mater Res Part A 2004; 68A: 747-755.
  • 68. Geiger F, Lorenz H, Xu W, et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 2007; 41: 516-522.
  • 69. Levet Y, Jost G. Utilisation de squelettes de coraux madreporaires en chirurgie reparatrice. Ann Chir Plast Esthet 1983; 28: 180-181.
  • 70. Braye F, Irigaray J L, Jallot E, et al. Resorption kinetics of osseous substitute: natural coral and synthetic hydroxyapatite. Biomaterials 1996; 17: 1345-1350.
  • 71. Dağlı AŞ, Akalın Y, Bilgili H, Seçkin S, Ensari S. Correction of saddle nose deformities by coral implantation. Eur Arch Otorhinolaryngol 1997; 254: 274-276.
Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi-Cover
  • ISSN: 1308-9323
  • Yayın Aralığı: Yılda 3 Sayı
  • Yayıncı: Prof.Dr. Mesut AKSAKAL
Sayıdaki Diğer Makaleler

Operative Treatment of Eosephageal Obstruction in A Calf

Ali Cesur ONMAZ, Vehbi GÜNEŞ, Gültekin ATALAN, Zafer DOĞAN, Muharrem EROL

Schmallenberg Virüsü

Şükrü TONBAK, Ahmet Kürşat AZKUR

Some Production Traits of White Karaman Ewes and Lambs Reared in the Farm Conditions in Elazig Province

Özge ÖZMEN, Selim KUL, Taşkın GÖK

Malatya İli Sığır, Koyun ve Keçi Yetiştiriciliğinin Mevcut Durumu

İbrahim ŞEKER, Abdurrahman KÖSEMAN

Üç Chinchilla'da Güç Doğuma Bağlı Sezaryen Olgusu

Gökhan BOZKURT, Yunus ÇETİN, Örsan GÜNGÖR

Soğuk Stres Koşulları Altında Bıldırcın Karma Yemlerine İlave Edilen Saponin Bakımından Zenginleştirilmiş Çöven Ekstraktının Performans ve Kan Parametreleri Üzerine Etkileri

Mehmet ÇİFTÇİ, Mehtap ÖZÇELİK, Seda MUTLU İFLAZOĞLU, Ü. Gülcihan ŞİMŞEK, İ. Halil ÇERÇİ, M. Ali AZMAN, Okan BAYRAK, Lütfi EMREOĞLU, Fatma TERLEMEZ, Mehmet KENAR, Ömür ÇELİK

Trombositten Zengin Fibrin'in Kemik İyileşmesi Üzerine Etkileri

Ali Said DURMUŞ, Havva Nur CAN

Mustafa Kemal Üniversitesi Veteriner Fakültesi Cerrahi Kliniği'ne Getirilen Olguların Değerlendirilmesi, 1293 Olgu (2009-2013)

Muhammed Enes ALTUĞ, Mehmet Zeki Yılmaz DEVECİ, Cafer Tayer İŞLER, Ziya YURTAL, Ramazan GÖNENCİ

İneklerde Meme Başı Derisinde Şekillenen Lezyonların Dağılımı ve Mastitis Üzerine Etkisi

Mustafa Kemal SARIBAY, Doğan DALGIÇ

Tavşanlarda Postoperatif İntraabdominal Adezyonların Önlenmesinde Hyaluronik asit/Karboksimetilselüloz Bariyerlerin Etkinliği

Mustafa KÖM