Comparative evaluation of demineralized and mineralized xenogeneic bovine bone powder and chips on the healing of circumscribed radial bone defects in the dog

Köpeklerin radiusunda yapılan dairesel defeklerde demineralize ve mineralize xenogenik sığır tozu ve partiküllerinin 2, 4, 6, 8 ve 12. haftalardaki iyileşme seyirleri karşılaştırmalı olarak değerlendirildi. Yabancı cisim reaksiyonu ve herhangi bir postoperatif yan etkiye rastlanmadı. Demineralize sığır xenogenik kemik tozu ile doldurulan defeklerin diğer formlardaki graf ile doldurulan defek iyileşmelerine göre daha fazla kemik dokusu oluşturması demineralizasyon ile birlikte graf ölçü küçüklüğünün önemini ortaya koymaktadır.Demineralize ve mineralize xenogenik kemik tozu ile partiküllerinin kemik iyileşmesi ve oluşum özelliklerinin karşılaştırılması demineralize kemik tozu lehine açık bir şekilde alan fenomeni farklılığını göstermektedir.Bu bulgulara dayanarak, türe özgü olmayan demineralize xenogenik sığır kemik tozunun verici olarak çok geniş hayvan kaynaklarının bulunması, kolay uygulanması, hazırlanması ve depolanabilme özelliği iyi bir graf materyali olduğunu ifade etmektedir.

Köpeklerde xenogenik demineralize ve mineralize kemik tozu ve partiküllerinin dairesel kemik defeklerinin iyileşmesi üzerindeki etkilerinin karşılaştırmalı olarak değerlendirilmesi

Healing of circumscribed defects made in the radius of dogs were evaluated using demineralized and mineralized xenogeneic bovine bone powder and chips at 2, 4, 6, 8, 12 weeks. No foreign body reactions and postoperative complications were encountered.Presence of more bone formation in the defects filled with demineralized xenogeneic bovine bone powder compared to other graft-filled defects explains the importance of demineralization process and smallness of the graft size. Comparison of the appearance of bone healing and formation pattern in demineralized and mineralized xenogeneic bovine bone powder and chips shows the remarkable histologic difference of field phenomenon bone formation in favour of demineralized bone powder. Based on these findings, demineralized xenogeneic bovine bone powder being not species specific may be a good implant with respect to availability of wide variety of animal resources as animal donor, easy preparation and storage in advance.

___

  • 1) Kerwin, SC, Lewis DD, Elkins AD, et al. Deep-frozen allogeneic cancellous bone grafts in 10 dogs: A case series. Vet Surg 1996; 25: 18-28.
  • 2) Fox SM. Cancellous bone grafting in the dog: An over view. J Am Vet Med Assoc 1984; 20: 840-848.
  • 3) Lesser AS. Cancellous bone grafting at plate removal to counteract stress protection J Am Vet Med Assoc 1986; 189: 696-699.
  • 4) Berry DJ, Chandler, HP, Reilly DT. The use of bone allografts in two-stage reconstruction after failure of hip replacements due to infection. J Bone Joint Surg Am 1991; 73: 1460-1468.
  • 5) Younger EM, Chapman MW. Morbidity at bone graft donor sites, J Orthop Trauma 1989; 3: 192-195.
  • 6) Chalmers J, Sisson AH. An experimental comparison of bone-grafting materials in the dog. J Bone Joint Surg 1959; 41B: 365-368.
  • 7) Concannon MJ, Mark MD, Puckett CL. Bone induction using demineralized bone in the rabbit femur: A long-term study. Plast Reconst Surg 1997; 99: 1983-1988.
  • 8) Heiple KG, Chase SW, Herndon CH. A comparative study of the healing process following different types of bone transplantation. J Bone Joint Surg Am 1963; 45: 1593-1612.
  • 9) Ross GE. Effect of diethilsitilbesrol, prednisolone and ısoniazid on the healing rate of bone defects filled with certain bone grafting materials. Am J Vet Res 1966; 27: 1745-1754.
  • 10) Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 1991; 2: 187-208.
  • 11) Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005; 36: Suppl 3, 20-27.
  • 12) Betz RR. Limitations of autograft and allograft: new synthetic solutions. Orthopedics 2002; 25, 5, Suppl: 561-570.
  • 13) Valentini P, Abensur D. Maxillary sinus floor elevation for implant placement with demineralized freeze-dried bone and bovine bone (Bio-Oss): a clinical study of 20 patients. Int J Periodontics Restorative Dent 1997; 17: 232-241.
  • 14) Zunino JH, Bengochea M, Johnston J, et al. Immunologic and osteogeneic properties of xenogeneic and allogeneic demineralized bone transplants. Cell Tissue Bank 2004; 5: 141-148.
  • 15) Bolander ME, Balian G. The use of demineralized bone matrix in the repair of segmental defects: ugmentation with extracted matrix proteins and a comparison with autologous grafts. J Bone Joint Surg Am 1986; 68: 1264-1274.
  • 16) Gepstein R, Weiss RE, Saba K, Ghallel T. Bridging large defects in bone by demineralized bone matrix in the form of a powder. J Bone Joint Surg Am 1987; 69: 984-992.
  • 17) Upton J, Boyajian M, Mulliken JB, Glowacki J. The use of demineralized xenogenic bone implants to correct phalangeal defects: A case report. J Hand Surg Am 1984; 9: 388-391.
  • 18) Mulliken JB, Glowacki J. Induced osteogenesis for repair and construction in the craniofacial region. Plast Reconst Surg 1980; 65: 553-560.
  • 19) Melcher A, Irving JT. The healing mechanism in artificially created circumscribed defects in the femora of albino rats. J Bone Joint Surg Br 1962; 44: 928-936.
  • 20) Kaban LB, Glowacki J. Augmentation of rat mandibular ridge with demineralized bone implants. J Dent Res 1984; 63: 998-1002.
  • 21) Concannon MJ, Mark MD, Boschert MT, Fitzpatrick L, Croll GH, Puckett CL. The use of demineralized bone powder in an onlay graft model. Plast Reconst Surg 1995; 95: 1085-1091.
  • 22) Sampath TK, Reddi AH. Homology of bone-inductive proteins from hyman, monkey, bovine and rat extracellular matrix. In: Proceedings of the National Academy of Sciences of the United States of America, 1983; p. 6591-6595.
  • 23) Sampath TK, Reddi AH. Dissociative extraction and reconstruction of extracellularmatrix componenets involved in local bone differentiation. In: Proceedings of the National Academy of Sciences of the United States of America, 1981; p. 7599-7603.
  • 24) Kenley RA, Yim K, Abrams J, et al. Biotechnology and bone graft substitutes. Pharm Res 1993; 10: 1393-1401.
  • 25) Kohler P, Ehrnberg A, Kreicbergs A. Osteogenic enhancement of diaphyseal reconstruction. Comparison of bone grafts in the rabbit. Acta Orthop Scand 1990; 61: 42-45.
  • 26) Kohler P, Kreicbergs A. Incorporation of autoclaved autogeneic bone supplemented with allogeneic demineralized bone matrix. An experimental study in the rabbit. Clin Orthop Relat Res 1987; 218: 247-258.
  • 27) Lindholm TS, Urist, MR.A quantitative analysis of new bone formation by induction in compositive grafts of bone marrow and bone matrix. Clin Orthop Relat Res 1980, 150: 288-300.
  • 28) Hosny M, Sharawy M. Osteoinduction in rhesus monkeys using demineralized bone powder allografts. J Oral Maxillofac Surg 1985; 43: 837-844.