Mikrodalga Fırında Limon Kurutma: Kinetiği ve Modellenmesi

Bu çalışmada mikrodalga fırında limonun ince tabaka kuruma kinetiği incelendi. 8 mm kalınlıktaki limondilimleri 90, 180, 360 ve 600 W mikrodalga (2450 MHz) çıkış güçlerinde kurutuldu ve zamanla limon kütlesinindeğişimi takip edildi. Mikrodalga çıkış gücündeki artma ile kuruma hızının arttığı görüldü. 90, 180, 360 ve 600W mikrodalga çıkış güçlerinde nihai nem içeriklerine sırasıyla 52, 16, 8 ve 5.5 dk sonunda ulaşıldı. Deneyselverileri değerlendirmek için literatürde önerilmiş olan Page, Henderson & Pabis ve Logaritmik ince tabakkuruma modelleri kullanıldı. Modeller arasındaki kıyaslama R2 , 2ve RMSE istatistiki parametrelerikullanılarak yapıldı. Kullanılan modeller arasında Page modelinin limonun mikrodalga kuruma davranışınıtemsil eden en iyi model olduğu görüldü.

Lemon Drying in Microwave Oven: Kinetics and Modeling

Thin-layer drying kinetics of lemon was investigated by using microwave oven in this study. Lemon sliceswith 8 mm thick were dried at different microwave output power (90, 180, 360, 600 W at 2450 MHz frequency)and monitored pairs of drying time and lemon mass. It was observed that drying rate of lemon increased withincreasing of the microwave output power. The final moisture contents of lemon for 90, 180, 360 and 600 Wmicrowave output power were obtained at end of 52, 16, 8 and 5.5 min drying time, respectively. Page,Henderson & Pabis and Logarithmic thin layer drying models, available in the literature were used to evaluatethe experimental data. All the models were compared according to statistical parameters; i.e. model efficiency(R2), chi-square (2) and root mean square error (RMSE). It was observed that Page model among the modelsused is best mathematical model represented the microwave drying behavior of lemon.

___

  • 1. Karim, M. A., Hawlader, M.N.A. (2005). Mathematical Modelling and Experimental Investigation of Tropical Fruits Drying. Int. J. Heat Mass Tran., 48, 4914-4925.
  • 2. Doymaz, İ. (1998). Üzüm ve Kahramanmaraş Biberinin Kuruma Karakteristiklerinin İncelenmesi, Doktora Tezi, Y. T. Ü., Fen- Bilimleri Enstitüsü, 127 s.
  • 3. Midilli, A., Kucuk, H., Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20 (7), 1503-1513.
  • 4. Yagcıoglu, A., Degirmencioglu, A., Cagatay,F. (1999). Drying characteristic of laurel leaves under different conditions. Proceedings of the 7th international congress on agricultural mechanization and energy, 26-27 May, Adana, Turkey.
  • 5. Saltiel, C., Datta, A. K. (1998). Heat and Mass Transfer in Microwave Processing. Advances in Heat Transfer, 32, 1-94.
  • 6. Nijhuis, H. H., Torringa, H. M., Muresan, S., Yuksel, D., Leguijt, C., & Kloek, W. (1998). Approaches to improving the quality of dried fruits and vegetables. Trends in Food Science and Technology, 9, 13-20.
  • 7. Bondaruk, J., Markowski, M., Blaszczak, W. (2007). Effect of drying conditions on the quality of vacuum-microwave dried potato cubes. Journal of Food Engineering, 81, 306-312.
  • 8. Sharma, G. P., Prasad, S. (2001). Drying of garlic (Alliumsativum) cloves by microwave-hot air combination. Journal of Food Engineering, 50,99-105.
  • 9. Torringa, E., Esveld, E., Scheewe, I., Vanden Berg, R., Bartels, P. (2001). Osmotic dehydration as a pre-treatment before combined microwave- hot-air drying of mushrooms. Journal of Food Engineering, 49(2-3), 185-191.
  • 10. Wang, J., Sheng, K. (2006). Far-infrared and microwave drying of peach. LWT 39, 247-255.
  • 11. Schiffmann, R. F. (2001). Microwave Processes for the Food Industry. In A. K. Datta, & R. C. Anantheswaran (Eds.), Handbook of Microwave Technology for Food Applications. New York: Marcel Dekker, 299-338.
  • 12. Arslan, D., Özcan, M. M. (2010). Study the effect of sun, oven and microwave drying on quality of onion slices. LWT-Food Science and Technology, 43, 1121-1127.
  • 13. Datta, A. K., Geedipalli, S. S. R., Almeida, M. F. (2005). Microwave combination heating. Food Technology, 59, 36-40.
  • 14. Sumnu, G., Turabi, T., Oztop, M. (2005). Drying of carrots in microwave and halogen lamp- microwave combination ovens. LWT, 38, 549-553.
  • 15. Doymaz, İ. (2007). The kinetics of forced convective air-drying of pumpkin slices. Journal of Food Engineering, 79, 243-248.
  • 16. Tulasidas, T. N., Ratti, C., Raghavan, G. S. V. (1997). Modelling of microwave drying of grapes. Canadian Agricultural Engineering, 39 (1), 57-67.
  • 17. Li, Z., Raghavan, G.S.V., Wang, N., Vigneault, C., 2011. Drying rate control in the middle stage of microwave drying. Journal of Food Engineering, 104, 234-238.
  • 18. Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwi fruits during hot air and microwave drying. Journal of Food Engineering, 48 (2), 177-182.
  • 19. Diaz, G. R., Martinez-Monzo, J., Fito, P., Chiralt, A. (2003). Modelling of dehydration-rehydration of orange slices in combined microwave/air drying. Innovative Food Science and Emerging Technologies, 4, 203-209.
  • 20. Ren, G., Chen,F. (1998). Drying of American Ginseng (Panax quinquefolium) roots by microwave-hot air combination. Journal of Food Engineering, 35, 433-443.
  • 21. Altan, A., Maskan, M. (2005). Microwave assisted drying of short-cut (ditalini) macaroni: Drying characteristics and effect of drying processes on starch properties. Food Research International, 38, 787-796.
  • 22. McMinn, W. A. M. (2006). Thin-layer modelling of the convective, microwave, microwave- convective and microwave-vacuum drying of lactose powder. Journal of Food Engineering, 72, 113-123.
  • 23. Midilli, A., Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44, 1111-1122.
  • 24. Ertekin, C., Yaldiz, O. (2004). Drying of egg plant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63, 349-359.